使用温度系数来支持内在无序蛋白质的共振分配。

IF 1.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Paulina Putko, Javier Agustin Romero, Christian F Pantoja, Markus Zweckstetter, Krzysztof Kazimierczuk, Anna Zawadzka-Kazimierczuk
{"title":"使用温度系数来支持内在无序蛋白质的共振分配。","authors":"Paulina Putko, Javier Agustin Romero, Christian F Pantoja, Markus Zweckstetter, Krzysztof Kazimierczuk, Anna Zawadzka-Kazimierczuk","doi":"10.1007/s10858-024-00452-9","DOIUrl":null,"url":null,"abstract":"<p><p>The resonance assignment of large intrinsically disordered proteins (IDPs) is difficult due to the low dispersion of chemical shifts (CSs). Luckily, CSs are often specific for certain residue types, which makes the task easier. Our recent work showed that the CS-based spin-system classification can be improved by applying a linear discriminant analysis (LDA). In this paper, we extend a set of classification parameters by adding temperature coefficients (TCs), i.e., rates of change of chemical shifts with temperature. As demonstrated previously by other groups, the TCs in IDPs depend on a residue type, although the relation is often too complex to be predicted theoretically. Thus, we propose an approach based on experimental data; CSs and TCs values of residues assigned using conventional methods serve as a training set for LDA, which then classifies the remaining resonances. The method is demonstrated on a large fragment (1-239) of highly disordered protein Tau. We noticed that adding TCs to sets of chemical shifts significantly improves the recognition efficiency. For example, it allows distinguishing between lysine and glutamic acid, as well as valine and isoleucine residues based on <math> <msup><mrow><mtext>H</mtext></mrow> <mtext>N</mtext></msup> </math> , N, <math><msub><mtext>C</mtext> <mi>α</mi></msub> </math> and C <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mo>'</mo></mmultiscripts> </math> data. Moreover, adding TCs to CSs of <math> <msup><mrow><mtext>H</mtext></mrow> <mtext>N</mtext></msup> </math> , N, <math><msub><mtext>C</mtext> <mi>α</mi></msub> </math> , and C <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mo>'</mo></mmultiscripts> </math> is more beneficial than adding <math><msub><mtext>C</mtext> <mi>β</mi></msub> </math> CSs. Our program for LDA analysis is available at https://github.com/gugumatz/LDA-Temp-Coeff .</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using temperature coefficients to support resonance assignment of intrinsically disordered proteins.\",\"authors\":\"Paulina Putko, Javier Agustin Romero, Christian F Pantoja, Markus Zweckstetter, Krzysztof Kazimierczuk, Anna Zawadzka-Kazimierczuk\",\"doi\":\"10.1007/s10858-024-00452-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The resonance assignment of large intrinsically disordered proteins (IDPs) is difficult due to the low dispersion of chemical shifts (CSs). Luckily, CSs are often specific for certain residue types, which makes the task easier. Our recent work showed that the CS-based spin-system classification can be improved by applying a linear discriminant analysis (LDA). In this paper, we extend a set of classification parameters by adding temperature coefficients (TCs), i.e., rates of change of chemical shifts with temperature. As demonstrated previously by other groups, the TCs in IDPs depend on a residue type, although the relation is often too complex to be predicted theoretically. Thus, we propose an approach based on experimental data; CSs and TCs values of residues assigned using conventional methods serve as a training set for LDA, which then classifies the remaining resonances. The method is demonstrated on a large fragment (1-239) of highly disordered protein Tau. We noticed that adding TCs to sets of chemical shifts significantly improves the recognition efficiency. For example, it allows distinguishing between lysine and glutamic acid, as well as valine and isoleucine residues based on <math> <msup><mrow><mtext>H</mtext></mrow> <mtext>N</mtext></msup> </math> , N, <math><msub><mtext>C</mtext> <mi>α</mi></msub> </math> and C <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mo>'</mo></mmultiscripts> </math> data. Moreover, adding TCs to CSs of <math> <msup><mrow><mtext>H</mtext></mrow> <mtext>N</mtext></msup> </math> , N, <math><msub><mtext>C</mtext> <mi>α</mi></msub> </math> , and C <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mo>'</mo></mmultiscripts> </math> is more beneficial than adding <math><msub><mtext>C</mtext> <mi>β</mi></msub> </math> CSs. Our program for LDA analysis is available at https://github.com/gugumatz/LDA-Temp-Coeff .</p>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10858-024-00452-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-024-00452-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于化学位移(CSs)的低分散性,大的内在无序蛋白(IDPs)的共振分配是困难的。幸运的是,CSs通常是特定于某些残留类型的,这使得任务更容易。我们最近的工作表明,利用线性判别分析(LDA)可以改进基于cs的自旋系统分类。在本文中,我们通过添加温度系数(TCs)扩展了一组分类参数,即化学位移随温度的变化率。正如先前其他研究小组所证明的那样,流离失所者的tc取决于剩余类型,尽管这种关系往往过于复杂,无法从理论上预测。因此,我们提出了一种基于实验数据的方法;使用传统方法分配的残差的CSs和tc值作为LDA的训练集,然后LDA对剩余的共振进行分类。该方法在高度无序的Tau蛋白的大片段(1-239)上得到了验证。我们注意到,将tc添加到化学位移集合中可以显著提高识别效率。例如,它可以根据H N, N, C α和C′数据区分赖氨酸和谷氨酸,以及缬氨酸和异亮氨酸残基。此外,在含有H N、N、C α和C′的碳水化合物中添加tc比添加C β碳水化合物更有利。我们的LDA分析程序可在https://github.com/gugumatz/LDA-Temp-Coeff上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using temperature coefficients to support resonance assignment of intrinsically disordered proteins.

The resonance assignment of large intrinsically disordered proteins (IDPs) is difficult due to the low dispersion of chemical shifts (CSs). Luckily, CSs are often specific for certain residue types, which makes the task easier. Our recent work showed that the CS-based spin-system classification can be improved by applying a linear discriminant analysis (LDA). In this paper, we extend a set of classification parameters by adding temperature coefficients (TCs), i.e., rates of change of chemical shifts with temperature. As demonstrated previously by other groups, the TCs in IDPs depend on a residue type, although the relation is often too complex to be predicted theoretically. Thus, we propose an approach based on experimental data; CSs and TCs values of residues assigned using conventional methods serve as a training set for LDA, which then classifies the remaining resonances. The method is demonstrated on a large fragment (1-239) of highly disordered protein Tau. We noticed that adding TCs to sets of chemical shifts significantly improves the recognition efficiency. For example, it allows distinguishing between lysine and glutamic acid, as well as valine and isoleucine residues based on H N , N, C α and C ' data. Moreover, adding TCs to CSs of H N , N, C α , and C ' is more beneficial than adding C β CSs. Our program for LDA analysis is available at https://github.com/gugumatz/LDA-Temp-Coeff .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular NMR
Journal of Biomolecular NMR 生物-光谱学
CiteScore
6.00
自引率
3.70%
发文量
19
审稿时长
6-12 weeks
期刊介绍: The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include: Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR. New NMR techniques for studies of biological macromolecules. Novel approaches to computer-aided automated analysis of multidimensional NMR spectra. Computational methods for the structural interpretation of NMR data, including structure refinement. Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals. New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信