评价治疗性单克隆抗体的电化学方法综述。

IF 10.7 1区 生物学 Q1 BIOPHYSICS
Biosensors and Bioelectronics Pub Date : 2025-03-01 Epub Date: 2024-11-23 DOI:10.1016/j.bios.2024.116988
Diana R Cunha, Marcela A Segundo, M Beatriz Quinaz
{"title":"评价治疗性单克隆抗体的电化学方法综述。","authors":"Diana R Cunha, Marcela A Segundo, M Beatriz Quinaz","doi":"10.1016/j.bios.2024.116988","DOIUrl":null,"url":null,"abstract":"<p><p>Biopharmaceuticals are complex pharmaceutical drug products produced by biotechnology in living systems. Small changes in the production process can induce differences in the structure of the active ingredient, which may have a strong impact on its pharmacological properties. Therefore, quality assurance of biopharmaceuticals results in a high analytical effort. Strict quality and stability monitoring of potentially critical quality attributes (CQAs) is required. Electrochemical methods have been contributing to the expansion of sensors and biosensors due to their advantages, such as cost-effectiveness and easy operation. Here, we discuss the recent developments in sensors and biosensors using electrochemical techniques employed for the determination of biopharmaceuticals, namely monoclonal antibodies (mAb) and fragments of mAbs. In the frame of this information, this review aims to critically address electrochemical sensors and biosensors for the analysis of biopharmaceuticals reported since 2016. Electrochemical bio(sensors) development has been mainly based on gold and aptamers, respectively, as the most used electrode material and biorecognition element. Also, Bevacizumab (BEVA) was the main therapeutic mAb detected and 69% of the works described a (bio)sensor) that can be applied to therapeutic drug monitoring.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"271 ","pages":"116988"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical methods for evaluation of therapeutic monoclonal antibodies: A review.\",\"authors\":\"Diana R Cunha, Marcela A Segundo, M Beatriz Quinaz\",\"doi\":\"10.1016/j.bios.2024.116988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biopharmaceuticals are complex pharmaceutical drug products produced by biotechnology in living systems. Small changes in the production process can induce differences in the structure of the active ingredient, which may have a strong impact on its pharmacological properties. Therefore, quality assurance of biopharmaceuticals results in a high analytical effort. Strict quality and stability monitoring of potentially critical quality attributes (CQAs) is required. Electrochemical methods have been contributing to the expansion of sensors and biosensors due to their advantages, such as cost-effectiveness and easy operation. Here, we discuss the recent developments in sensors and biosensors using electrochemical techniques employed for the determination of biopharmaceuticals, namely monoclonal antibodies (mAb) and fragments of mAbs. In the frame of this information, this review aims to critically address electrochemical sensors and biosensors for the analysis of biopharmaceuticals reported since 2016. Electrochemical bio(sensors) development has been mainly based on gold and aptamers, respectively, as the most used electrode material and biorecognition element. Also, Bevacizumab (BEVA) was the main therapeutic mAb detected and 69% of the works described a (bio)sensor) that can be applied to therapeutic drug monitoring.</p>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"271 \",\"pages\":\"116988\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bios.2024.116988\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2024.116988","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

生物制药是生物技术在生命系统中生产的复杂药物产品。生产过程中的微小变化可能导致活性成分结构的差异,这可能对其药理特性产生强烈影响。因此,生物制药的质量保证需要大量的分析工作。需要对潜在的关键质量属性(cqa)进行严格的质量和稳定性监控。电化学方法具有成本效益高、操作简单等优点,为传感器和生物传感器的发展做出了贡献。在这里,我们讨论了传感器和生物传感器的最新发展,这些传感器使用电化学技术用于测定生物药物,即单克隆抗体(mAb)和单克隆抗体片段。在此信息的框架内,本综述旨在批判性地讨论电化学传感器和生物传感器,用于分析自2016年以来报告的生物制药。电化学生物传感器的发展主要以金和适配体为主要电极材料和生物识别元件。此外,贝伐单抗(BEVA)是检测到的主要治疗性单抗,69%的作品描述了一种可用于治疗性药物监测的(生物)传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical methods for evaluation of therapeutic monoclonal antibodies: A review.

Biopharmaceuticals are complex pharmaceutical drug products produced by biotechnology in living systems. Small changes in the production process can induce differences in the structure of the active ingredient, which may have a strong impact on its pharmacological properties. Therefore, quality assurance of biopharmaceuticals results in a high analytical effort. Strict quality and stability monitoring of potentially critical quality attributes (CQAs) is required. Electrochemical methods have been contributing to the expansion of sensors and biosensors due to their advantages, such as cost-effectiveness and easy operation. Here, we discuss the recent developments in sensors and biosensors using electrochemical techniques employed for the determination of biopharmaceuticals, namely monoclonal antibodies (mAb) and fragments of mAbs. In the frame of this information, this review aims to critically address electrochemical sensors and biosensors for the analysis of biopharmaceuticals reported since 2016. Electrochemical bio(sensors) development has been mainly based on gold and aptamers, respectively, as the most used electrode material and biorecognition element. Also, Bevacizumab (BEVA) was the main therapeutic mAb detected and 69% of the works described a (bio)sensor) that can be applied to therapeutic drug monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信