{"title":"新分离菌株ZCH-15利用橘子皮生产聚羟基烷酸酯及其代谢机制","authors":"Jinju Hou, Lei Cheng, Shudong Zhang, Xiaotong Zhang, Xilong Zheng, Qiuzhuo Zhang","doi":"10.1016/j.biortech.2024.131949","DOIUrl":null,"url":null,"abstract":"<p><p>Polyhydroxyalkanoate (PHA) is considered a sustainable alternative to traditional petroleum-based plastics due to its biodegradability and biocompatibility. In this study, Acidovorax diaphorobacter ZCH-15, an efficient PHA-producing strain, was isolated from activated sludge. Using food waste-derived orange peel as a substrate, the strain initially achieved a PHA concentration of 0.39 g/L. Under optimal fermentation conditions (30℃, pH 8, 2 % inoculum concentration, and 30 g/L carbon source), the PHA concentration increased by 138 % to reach a maximum of 0.93 g/L. Proton nuclear magnetic resonance spectroscopy and gas chromatography analyses identified the PHA composition as poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which exhibited high crystallinity and structural stability. Metabolomic analysis indicated that the tricarboxylic acid cycle and pentose phosphate pathway were involved in producing succinyl-CoA, a precursor required for PHA synthesis. This study demonstrates the potential for cost-effective industrial PHA production while enabling the high-value utilization of food waste.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131949"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of polyhydroxyalkanoate from new isolated bacteria of Acidovorax diaphorobacter ZCH-15 using orange peel and its underlying metabolic mechanisms.\",\"authors\":\"Jinju Hou, Lei Cheng, Shudong Zhang, Xiaotong Zhang, Xilong Zheng, Qiuzhuo Zhang\",\"doi\":\"10.1016/j.biortech.2024.131949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyhydroxyalkanoate (PHA) is considered a sustainable alternative to traditional petroleum-based plastics due to its biodegradability and biocompatibility. In this study, Acidovorax diaphorobacter ZCH-15, an efficient PHA-producing strain, was isolated from activated sludge. Using food waste-derived orange peel as a substrate, the strain initially achieved a PHA concentration of 0.39 g/L. Under optimal fermentation conditions (30℃, pH 8, 2 % inoculum concentration, and 30 g/L carbon source), the PHA concentration increased by 138 % to reach a maximum of 0.93 g/L. Proton nuclear magnetic resonance spectroscopy and gas chromatography analyses identified the PHA composition as poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which exhibited high crystallinity and structural stability. Metabolomic analysis indicated that the tricarboxylic acid cycle and pentose phosphate pathway were involved in producing succinyl-CoA, a precursor required for PHA synthesis. This study demonstrates the potential for cost-effective industrial PHA production while enabling the high-value utilization of food waste.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"131949\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2024.131949\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131949","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Production of polyhydroxyalkanoate from new isolated bacteria of Acidovorax diaphorobacter ZCH-15 using orange peel and its underlying metabolic mechanisms.
Polyhydroxyalkanoate (PHA) is considered a sustainable alternative to traditional petroleum-based plastics due to its biodegradability and biocompatibility. In this study, Acidovorax diaphorobacter ZCH-15, an efficient PHA-producing strain, was isolated from activated sludge. Using food waste-derived orange peel as a substrate, the strain initially achieved a PHA concentration of 0.39 g/L. Under optimal fermentation conditions (30℃, pH 8, 2 % inoculum concentration, and 30 g/L carbon source), the PHA concentration increased by 138 % to reach a maximum of 0.93 g/L. Proton nuclear magnetic resonance spectroscopy and gas chromatography analyses identified the PHA composition as poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which exhibited high crystallinity and structural stability. Metabolomic analysis indicated that the tricarboxylic acid cycle and pentose phosphate pathway were involved in producing succinyl-CoA, a precursor required for PHA synthesis. This study demonstrates the potential for cost-effective industrial PHA production while enabling the high-value utilization of food waste.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.