降低量子化学计算中的数值精度要求。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2024-12-24 Epub Date: 2024-12-07 DOI:10.1021/acs.jctc.4c00938
William Dawson, Katsuhisa Ozaki, Jens Domke, Takahito Nakajima
{"title":"降低量子化学计算中的数值精度要求。","authors":"William Dawson, Katsuhisa Ozaki, Jens Domke, Takahito Nakajima","doi":"10.1021/acs.jctc.4c00938","DOIUrl":null,"url":null,"abstract":"<p><p>The abundant demand for deep learning compute resources has created a renaissance in low-precision hardware. Going forward, it will be essential for simulation software to run on this new generation of machines without sacrificing scientific fidelity. In this paper, we examine the precision requirements of a representative kernel from quantum chemistry calculations: the calculation of the single-particle density matrix from a given mean-field Hamiltonian (i.e., Hartree-Fock or density functional theory) represented in an LCAO basis. We find that double precision affords an unnecessarily high level of precision, leading to optimization opportunities. We show how an approximation built from an error-free matrix multiplication transformation can be used to potentially accelerate this kernel on future hardware. Our results provide a roadmap for adapting quantum chemistry software for the next generation of high-performance computing platforms.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10826-10837"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Numerical Precision Requirements in Quantum Chemistry Calculations.\",\"authors\":\"William Dawson, Katsuhisa Ozaki, Jens Domke, Takahito Nakajima\",\"doi\":\"10.1021/acs.jctc.4c00938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The abundant demand for deep learning compute resources has created a renaissance in low-precision hardware. Going forward, it will be essential for simulation software to run on this new generation of machines without sacrificing scientific fidelity. In this paper, we examine the precision requirements of a representative kernel from quantum chemistry calculations: the calculation of the single-particle density matrix from a given mean-field Hamiltonian (i.e., Hartree-Fock or density functional theory) represented in an LCAO basis. We find that double precision affords an unnecessarily high level of precision, leading to optimization opportunities. We show how an approximation built from an error-free matrix multiplication transformation can be used to potentially accelerate this kernel on future hardware. Our results provide a roadmap for adapting quantum chemistry software for the next generation of high-performance computing platforms.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"10826-10837\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00938\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00938","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对深度学习计算资源的大量需求导致了低精度硬件的复兴。展望未来,在不牺牲科学保真度的情况下,模拟软件在新一代机器上运行将是至关重要的。在本文中,我们研究了量子化学计算中代表性核的精度要求:从LCAO基中表示的给定平均场哈密顿量(即Hartree-Fock或密度泛函理论)计算单粒子密度矩阵。我们发现,双精度提供了一个不必要的高精度水平,导致优化的机会。我们将展示如何使用从无错误矩阵乘法变换构建的近似值来潜在地在未来的硬件上加速该内核。我们的研究结果为将量子化学软件应用于下一代高性能计算平台提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing Numerical Precision Requirements in Quantum Chemistry Calculations.

The abundant demand for deep learning compute resources has created a renaissance in low-precision hardware. Going forward, it will be essential for simulation software to run on this new generation of machines without sacrificing scientific fidelity. In this paper, we examine the precision requirements of a representative kernel from quantum chemistry calculations: the calculation of the single-particle density matrix from a given mean-field Hamiltonian (i.e., Hartree-Fock or density functional theory) represented in an LCAO basis. We find that double precision affords an unnecessarily high level of precision, leading to optimization opportunities. We show how an approximation built from an error-free matrix multiplication transformation can be used to potentially accelerate this kernel on future hardware. Our results provide a roadmap for adapting quantum chemistry software for the next generation of high-performance computing platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信