{"title":"磁场对羟乙基纤维素-碳纳米管膜结构和吸附性能的影响","authors":"S. A. Vshivkov, E. V. Rusinova, A. G. Galyas","doi":"10.1134/S0965545X24600923","DOIUrl":null,"url":null,"abstract":"<p>Using polarization and scanning electron microscopy and water vapor sorption the structure and properties of film composite nanomaterials based on hydroxyethyl cellulose and carbon nanotubes obtained in the magnetic field and outside the field have been studied. The films are anisotropic, which is associated with the formation of a liquid-crystalline phase during solvent evaporation from solution. Application of the magnetic field leads to the orientation of macromolecules and carbon nanotubess in the films, facilitating compaction of the structure of films and reduction in their ability to sorb water vapor. The Gibbs energies of the interaction of hydroxyethyl cellulose/carbon nanotube films obtained in the magnetic field and outside the field with water are calculated. For the films obtained in the magnetic field the negative values of the Gibbs energies decrease, indicating worsening of their interaction with water. With the introduction of carbon nanotubes into hydroxyethyl cellulose this effect becomes more pronounced.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"66 3","pages":"404 - 410"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Magnetic Field on the Structure and Sorption Properties of Films Based on Hydroxyethyl Cellulose and Carbon Nanotubes\",\"authors\":\"S. A. Vshivkov, E. V. Rusinova, A. G. Galyas\",\"doi\":\"10.1134/S0965545X24600923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using polarization and scanning electron microscopy and water vapor sorption the structure and properties of film composite nanomaterials based on hydroxyethyl cellulose and carbon nanotubes obtained in the magnetic field and outside the field have been studied. The films are anisotropic, which is associated with the formation of a liquid-crystalline phase during solvent evaporation from solution. Application of the magnetic field leads to the orientation of macromolecules and carbon nanotubess in the films, facilitating compaction of the structure of films and reduction in their ability to sorb water vapor. The Gibbs energies of the interaction of hydroxyethyl cellulose/carbon nanotube films obtained in the magnetic field and outside the field with water are calculated. For the films obtained in the magnetic field the negative values of the Gibbs energies decrease, indicating worsening of their interaction with water. With the introduction of carbon nanotubes into hydroxyethyl cellulose this effect becomes more pronounced.</p>\",\"PeriodicalId\":738,\"journal\":{\"name\":\"Polymer Science, Series A\",\"volume\":\"66 3\",\"pages\":\"404 - 410\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965545X24600923\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X24600923","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effect of Magnetic Field on the Structure and Sorption Properties of Films Based on Hydroxyethyl Cellulose and Carbon Nanotubes
Using polarization and scanning electron microscopy and water vapor sorption the structure and properties of film composite nanomaterials based on hydroxyethyl cellulose and carbon nanotubes obtained in the magnetic field and outside the field have been studied. The films are anisotropic, which is associated with the formation of a liquid-crystalline phase during solvent evaporation from solution. Application of the magnetic field leads to the orientation of macromolecules and carbon nanotubess in the films, facilitating compaction of the structure of films and reduction in their ability to sorb water vapor. The Gibbs energies of the interaction of hydroxyethyl cellulose/carbon nanotube films obtained in the magnetic field and outside the field with water are calculated. For the films obtained in the magnetic field the negative values of the Gibbs energies decrease, indicating worsening of their interaction with water. With the introduction of carbon nanotubes into hydroxyethyl cellulose this effect becomes more pronounced.
期刊介绍:
Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.