增强锂离子电导率:豪斯曼尼特纳米填料对PVDF-HFP /PEG共混纳米复合聚合物电解质的影响

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Khizar Hayat Khan, Aneesa Zafar, Haroon Rashid, Iftikhar Ahmad, Gul Shahzada Khan and Hazrat Hussain
{"title":"增强锂离子电导率:豪斯曼尼特纳米填料对PVDF-HFP /PEG共混纳米复合聚合物电解质的影响","authors":"Khizar Hayat Khan, Aneesa Zafar, Haroon Rashid, Iftikhar Ahmad, Gul Shahzada Khan and Hazrat Hussain","doi":"10.1039/D4MA00694A","DOIUrl":null,"url":null,"abstract":"<p >A new series of PVDF–HFP/PEG-based nanocomposite polymer electrolytes (NCPEs) have been fabricated using hausmannite (Mn<small><sub>3</sub></small>O<small><sub>4</sub></small>) nanoparticles as the nanofiller and LiClO<small><sub>4</sub></small> as the lithium-ion source <em>via</em> the solvent casting method. A pristine PVDF–HFP NCPE sample with 2 wt% nanofiller was also prepared for comparison. The Mn<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles were synthesized by the precipitation method using CTAB as a templating agent and MnCl<small><sub>2</sub></small>·4H<small><sub>2</sub></small>O as the precursor. FTIR spectroscopy showed that while pristine PVDF–HFP forms a nonpolar α-phase, the incorporation of salt and nanofiller induced a mixed β and γ crystal phase, indicating interaction between the matrix and additives. Surface morphology studies showed that the NCPEs had a denser surface than pristine PVDF–HFP, with no PEG spherulite formation detected in polarized optical micrographs. Electrochemical impedance spectroscopy revealed that the 2% blend NCPE exhibited the highest ion conductivity of 3.1 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small> at 80 °C, an order of magnitude higher than the pristine NCPE (5.1 × 10<small><sup>−5</sup></small> S cm<small><sup>−1</sup></small>). Temperature-dependent ion conductivity followed Arrhenius behavior, indicating a thermally activated ion hopping mechanism. The dielectric relaxation peak shifted to higher frequency with increasing temperature, suggesting faster ion dynamics and improved conductivity.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 24","pages":" 9613-9625"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00694a?page=search","citationCount":"0","resultStr":"{\"title\":\"Enhancing lithium-ion conductivity: impact of hausmannite nanofiller on PVDF–HFP/PEG blend nanocomposite polymer electrolytes\",\"authors\":\"Khizar Hayat Khan, Aneesa Zafar, Haroon Rashid, Iftikhar Ahmad, Gul Shahzada Khan and Hazrat Hussain\",\"doi\":\"10.1039/D4MA00694A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A new series of PVDF–HFP/PEG-based nanocomposite polymer electrolytes (NCPEs) have been fabricated using hausmannite (Mn<small><sub>3</sub></small>O<small><sub>4</sub></small>) nanoparticles as the nanofiller and LiClO<small><sub>4</sub></small> as the lithium-ion source <em>via</em> the solvent casting method. A pristine PVDF–HFP NCPE sample with 2 wt% nanofiller was also prepared for comparison. The Mn<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles were synthesized by the precipitation method using CTAB as a templating agent and MnCl<small><sub>2</sub></small>·4H<small><sub>2</sub></small>O as the precursor. FTIR spectroscopy showed that while pristine PVDF–HFP forms a nonpolar α-phase, the incorporation of salt and nanofiller induced a mixed β and γ crystal phase, indicating interaction between the matrix and additives. Surface morphology studies showed that the NCPEs had a denser surface than pristine PVDF–HFP, with no PEG spherulite formation detected in polarized optical micrographs. Electrochemical impedance spectroscopy revealed that the 2% blend NCPE exhibited the highest ion conductivity of 3.1 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small> at 80 °C, an order of magnitude higher than the pristine NCPE (5.1 × 10<small><sup>−5</sup></small> S cm<small><sup>−1</sup></small>). Temperature-dependent ion conductivity followed Arrhenius behavior, indicating a thermally activated ion hopping mechanism. The dielectric relaxation peak shifted to higher frequency with increasing temperature, suggesting faster ion dynamics and improved conductivity.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 24\",\"pages\":\" 9613-9625\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00694a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00694a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00694a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用溶剂浇铸法制备了PVDF-HFP / peg基纳米复合聚合物电解质(NCPEs),以锰氧化锰(Mn3O4)为纳米填料,LiClO4为锂离子源。一个原始的PVDF-HFP NCPE样品与2 wt%的纳米填料也准备进行比较。以CTAB为模板剂,MnCl2·4H2O为前驱体,采用沉淀法合成纳米Mn3O4。FTIR光谱分析表明,原始PVDF-HFP形成了非极性α-相,而盐和纳米填料的掺入则形成了混合的β和γ晶体相,表明基体与添加剂之间存在相互作用。表面形貌研究表明,NCPEs比原始PVDF-HFP具有更致密的表面,偏振光学显微照片中没有检测到PEG球晶的形成。电化学阻抗谱显示,在80°C时,2%共混NCPE的离子电导率最高,为3.1 × 10−4 S cm−1,比原始NCPE (5.1 × 10−5 S cm−1)高出一个数量级。温度相关的离子电导率遵循Arrhenius行为,表明热激活的离子跳变机制。随着温度的升高,介质弛豫峰向更高的频率移动,表明离子动力学更快,电导率提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing lithium-ion conductivity: impact of hausmannite nanofiller on PVDF–HFP/PEG blend nanocomposite polymer electrolytes

Enhancing lithium-ion conductivity: impact of hausmannite nanofiller on PVDF–HFP/PEG blend nanocomposite polymer electrolytes

A new series of PVDF–HFP/PEG-based nanocomposite polymer electrolytes (NCPEs) have been fabricated using hausmannite (Mn3O4) nanoparticles as the nanofiller and LiClO4 as the lithium-ion source via the solvent casting method. A pristine PVDF–HFP NCPE sample with 2 wt% nanofiller was also prepared for comparison. The Mn3O4 nanoparticles were synthesized by the precipitation method using CTAB as a templating agent and MnCl2·4H2O as the precursor. FTIR spectroscopy showed that while pristine PVDF–HFP forms a nonpolar α-phase, the incorporation of salt and nanofiller induced a mixed β and γ crystal phase, indicating interaction between the matrix and additives. Surface morphology studies showed that the NCPEs had a denser surface than pristine PVDF–HFP, with no PEG spherulite formation detected in polarized optical micrographs. Electrochemical impedance spectroscopy revealed that the 2% blend NCPE exhibited the highest ion conductivity of 3.1 × 10−4 S cm−1 at 80 °C, an order of magnitude higher than the pristine NCPE (5.1 × 10−5 S cm−1). Temperature-dependent ion conductivity followed Arrhenius behavior, indicating a thermally activated ion hopping mechanism. The dielectric relaxation peak shifted to higher frequency with increasing temperature, suggesting faster ion dynamics and improved conductivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信