无限波导中波动方程的传输问题

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Reinhard Racke, Shuji Yoshikawa
{"title":"无限波导中波动方程的传输问题","authors":"Reinhard Racke, Shuji Yoshikawa","doi":"10.1016/j.aml.2024.109405","DOIUrl":null,"url":null,"abstract":"We prove a decay estimate for solutions to a transmission problem for wave equations with different propagation speeds in an infinite waveguide. The problem represents the wave propagation in unbounded and layered composite materials in which different properties are given. It is a new composition of a waveguide problem and a transmission problem, motivated by a unit cell model for CFRP. The proof is based on splitting variables, partial eigenfunction expansions in the bounded cross section, and on an explicit Weyl type estimate for the eigenvalues.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"82 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transmission problem for wave equations in infinite waveguides\",\"authors\":\"Reinhard Racke, Shuji Yoshikawa\",\"doi\":\"10.1016/j.aml.2024.109405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a decay estimate for solutions to a transmission problem for wave equations with different propagation speeds in an infinite waveguide. The problem represents the wave propagation in unbounded and layered composite materials in which different properties are given. It is a new composition of a waveguide problem and a transmission problem, motivated by a unit cell model for CFRP. The proof is based on splitting variables, partial eigenfunction expansions in the bounded cross section, and on an explicit Weyl type estimate for the eigenvalues.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2024.109405\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109405","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了无限波导中具有不同传播速度的波方程的传输问题解的衰减估计。该问题描述了波在具有不同性质的无界层状复合材料中的传播。它是由CFRP的单胞模型驱动的波导问题和传输问题的新组合。该证明是基于分裂变量,在有界截面上的部分特征函数展开式,以及特征值的显式Weyl型估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A transmission problem for wave equations in infinite waveguides
We prove a decay estimate for solutions to a transmission problem for wave equations with different propagation speeds in an infinite waveguide. The problem represents the wave propagation in unbounded and layered composite materials in which different properties are given. It is a new composition of a waveguide problem and a transmission problem, motivated by a unit cell model for CFRP. The proof is based on splitting variables, partial eigenfunction expansions in the bounded cross section, and on an explicit Weyl type estimate for the eigenvalues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信