探索耦合物理机制和深度学习的混合水文模型的性能和可解释性

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL
Miao He, Shanhu Jiang, Liliang Ren, Hao Cui, Shuping Du, Yongwei Zhu, Tianling Qin, Xiaoli Yang, Xiuqin Fang, Chong-Yu Xu
{"title":"探索耦合物理机制和深度学习的混合水文模型的性能和可解释性","authors":"Miao He, Shanhu Jiang, Liliang Ren, Hao Cui, Shuping Du, Yongwei Zhu, Tianling Qin, Xiaoli Yang, Xiuqin Fang, Chong-Yu Xu","doi":"10.1016/j.jhydrol.2024.132440","DOIUrl":null,"url":null,"abstract":"Recently, differentiable modeling techniques have emerged as a promising approach to bidirectionally integrating neural networks and hydrologic models, achieving performance levels close to deep learning models while preserving the ability to output physical states and fluxes. However, there remains a lack of systematic exploration into the performance and physical interpretability of hybrid models that use neural networks to replace the runoff generation and routing processes in regionalized modeling. This research developed 12 regionalized hybrid models based on a differentiable parameter learning (DPL) framework, utilizing the Hydrologiska Byråns Vattenbalansavdelning (HBV) model as the foundational backbone. These hybrid models incorporate neural networks to replace the various physical processes within the runoff generation and routing modules. The publicly available CAMELS dataset is employed to evaluate the performance and interpretability of these hybrid models. The results show that while the median Nash-Sutcliffe efficiency (NSE) and Kling-Gupta efficiency (KGE) coefficients for all hybrid models are lower than those of the purely data-driven regionalized long short-term memory neural network (LSTM) model (median NSE: 0.742, median KGE: 0.762), the best-performing hybrid model (median NSE: 0.731, median KGE: 0.761) approaches the LSTM model and has better physical interpretability. Embedding neural networks does not inherently guarantee improved performance and may, in some cases, even result in reduced performance. The degree of performance enhancement is not significantly correlated with the number of embedded neural networks. Compared to replacing the runoff generation process, substituting the routing process with neural networks yields more substantial performance improvements and enables the learning of different routing patterns based on the catchment’s static attributes. This study underscores the importance of reasonably balancing the location, complexity, and quantity of embedded neural networks to achieve a trade-off between model performance and interpretability in hybrid modeling. These insights contribute to advancing regionalized hybrid modeling development.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"28 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the performance and interpretability of hybrid hydrologic model coupling physical mechanisms and deep learning\",\"authors\":\"Miao He, Shanhu Jiang, Liliang Ren, Hao Cui, Shuping Du, Yongwei Zhu, Tianling Qin, Xiaoli Yang, Xiuqin Fang, Chong-Yu Xu\",\"doi\":\"10.1016/j.jhydrol.2024.132440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, differentiable modeling techniques have emerged as a promising approach to bidirectionally integrating neural networks and hydrologic models, achieving performance levels close to deep learning models while preserving the ability to output physical states and fluxes. However, there remains a lack of systematic exploration into the performance and physical interpretability of hybrid models that use neural networks to replace the runoff generation and routing processes in regionalized modeling. This research developed 12 regionalized hybrid models based on a differentiable parameter learning (DPL) framework, utilizing the Hydrologiska Byråns Vattenbalansavdelning (HBV) model as the foundational backbone. These hybrid models incorporate neural networks to replace the various physical processes within the runoff generation and routing modules. The publicly available CAMELS dataset is employed to evaluate the performance and interpretability of these hybrid models. The results show that while the median Nash-Sutcliffe efficiency (NSE) and Kling-Gupta efficiency (KGE) coefficients for all hybrid models are lower than those of the purely data-driven regionalized long short-term memory neural network (LSTM) model (median NSE: 0.742, median KGE: 0.762), the best-performing hybrid model (median NSE: 0.731, median KGE: 0.761) approaches the LSTM model and has better physical interpretability. Embedding neural networks does not inherently guarantee improved performance and may, in some cases, even result in reduced performance. The degree of performance enhancement is not significantly correlated with the number of embedded neural networks. Compared to replacing the runoff generation process, substituting the routing process with neural networks yields more substantial performance improvements and enables the learning of different routing patterns based on the catchment’s static attributes. This study underscores the importance of reasonably balancing the location, complexity, and quantity of embedded neural networks to achieve a trade-off between model performance and interpretability in hybrid modeling. These insights contribute to advancing regionalized hybrid modeling development.\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhydrol.2024.132440\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132440","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

最近,可微建模技术已经成为一种很有前途的方法,可以双向集成神经网络和水文模型,在保持输出物理状态和通量的能力的同时,实现接近深度学习模型的性能水平。然而,对于在区域化建模中使用神经网络代替径流生成和路径过程的混合模型的性能和物理可解释性,仍然缺乏系统的探索。本研究以Hydrologiska byr Vattenbalansavdelning (HBV)模型为基础,基于可微分参数学习(DPL)框架开发了12个区分混合模型。这些混合模型结合了神经网络来取代径流生成和路由模块中的各种物理过程。使用公开可用的camel数据集来评估这些混合模型的性能和可解释性。结果表明,虽然所有混合模型的纳什-苏特克利夫效率(NSE)和克林格-古普塔效率(KGE)系数中值均低于纯数据驱动的区区化长短期记忆神经网络(LSTM)模型(NSE中值为0.742,KGE中值为0.762),但表现最好的混合模型(NSE中值为0.731,KGE中值为0.761)接近LSTM模型,具有更好的物理可解释性。嵌入神经网络并不能保证性能的提高,在某些情况下,甚至会导致性能的降低。性能增强的程度与嵌入神经网络的数量没有显著相关。与替代径流生成过程相比,用神经网络替代路由过程可以获得更大的性能改进,并且可以根据集水区的静态属性学习不同的路由模式。本研究强调了在混合建模中合理平衡嵌入式神经网络的位置、复杂性和数量的重要性,以实现模型性能和可解释性之间的权衡。这些见解有助于推进区域化混合建模开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the performance and interpretability of hybrid hydrologic model coupling physical mechanisms and deep learning
Recently, differentiable modeling techniques have emerged as a promising approach to bidirectionally integrating neural networks and hydrologic models, achieving performance levels close to deep learning models while preserving the ability to output physical states and fluxes. However, there remains a lack of systematic exploration into the performance and physical interpretability of hybrid models that use neural networks to replace the runoff generation and routing processes in regionalized modeling. This research developed 12 regionalized hybrid models based on a differentiable parameter learning (DPL) framework, utilizing the Hydrologiska Byråns Vattenbalansavdelning (HBV) model as the foundational backbone. These hybrid models incorporate neural networks to replace the various physical processes within the runoff generation and routing modules. The publicly available CAMELS dataset is employed to evaluate the performance and interpretability of these hybrid models. The results show that while the median Nash-Sutcliffe efficiency (NSE) and Kling-Gupta efficiency (KGE) coefficients for all hybrid models are lower than those of the purely data-driven regionalized long short-term memory neural network (LSTM) model (median NSE: 0.742, median KGE: 0.762), the best-performing hybrid model (median NSE: 0.731, median KGE: 0.761) approaches the LSTM model and has better physical interpretability. Embedding neural networks does not inherently guarantee improved performance and may, in some cases, even result in reduced performance. The degree of performance enhancement is not significantly correlated with the number of embedded neural networks. Compared to replacing the runoff generation process, substituting the routing process with neural networks yields more substantial performance improvements and enables the learning of different routing patterns based on the catchment’s static attributes. This study underscores the importance of reasonably balancing the location, complexity, and quantity of embedded neural networks to achieve a trade-off between model performance and interpretability in hybrid modeling. These insights contribute to advancing regionalized hybrid modeling development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信