{"title":"对采用mlop的挑战进行了分析","authors":"Chintan Amrit, Ashwini Kolar Narayanappa","doi":"10.1016/j.jik.2024.100637","DOIUrl":null,"url":null,"abstract":"<div><div>The field of MLOps (Machine Learning Operations), which focuses on effectively managing and operationalizing ML workflows, has grown because of the advancements in machine learning (ML). The goal of this study is to examine and contrast the difficulties encountered in the implementation of MLOps in enterprises with those encountered in DevOps. An SLR (Systematic Literature Review) is the first step in the research process to find the issues raised in the literature. The results of this study are based on qualitative content analysis using grounded theory and semi-structured interviews with 12 ML practitioners from different sectors. Organisational, technical, operational, and business problems are the four distinct aspects of challenges for MLOps that our study highlights. These challenges are further defined by eleven different themes. Our research indicates that while some issues, such as data and model complexity, are unique to MLOps, others are shared by DevOps and MLOps as well. The report offers suggestions for further research and summarises the difficulties.</div></div>","PeriodicalId":46792,"journal":{"name":"Journal of Innovation & Knowledge","volume":"10 1","pages":"Article 100637"},"PeriodicalIF":15.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis of the challenges in the adoption of MLOps\",\"authors\":\"Chintan Amrit, Ashwini Kolar Narayanappa\",\"doi\":\"10.1016/j.jik.2024.100637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The field of MLOps (Machine Learning Operations), which focuses on effectively managing and operationalizing ML workflows, has grown because of the advancements in machine learning (ML). The goal of this study is to examine and contrast the difficulties encountered in the implementation of MLOps in enterprises with those encountered in DevOps. An SLR (Systematic Literature Review) is the first step in the research process to find the issues raised in the literature. The results of this study are based on qualitative content analysis using grounded theory and semi-structured interviews with 12 ML practitioners from different sectors. Organisational, technical, operational, and business problems are the four distinct aspects of challenges for MLOps that our study highlights. These challenges are further defined by eleven different themes. Our research indicates that while some issues, such as data and model complexity, are unique to MLOps, others are shared by DevOps and MLOps as well. The report offers suggestions for further research and summarises the difficulties.</div></div>\",\"PeriodicalId\":46792,\"journal\":{\"name\":\"Journal of Innovation & Knowledge\",\"volume\":\"10 1\",\"pages\":\"Article 100637\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovation & Knowledge\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2444569X24001768\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovation & Knowledge","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2444569X24001768","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
An analysis of the challenges in the adoption of MLOps
The field of MLOps (Machine Learning Operations), which focuses on effectively managing and operationalizing ML workflows, has grown because of the advancements in machine learning (ML). The goal of this study is to examine and contrast the difficulties encountered in the implementation of MLOps in enterprises with those encountered in DevOps. An SLR (Systematic Literature Review) is the first step in the research process to find the issues raised in the literature. The results of this study are based on qualitative content analysis using grounded theory and semi-structured interviews with 12 ML practitioners from different sectors. Organisational, technical, operational, and business problems are the four distinct aspects of challenges for MLOps that our study highlights. These challenges are further defined by eleven different themes. Our research indicates that while some issues, such as data and model complexity, are unique to MLOps, others are shared by DevOps and MLOps as well. The report offers suggestions for further research and summarises the difficulties.
期刊介绍:
The Journal of Innovation and Knowledge (JIK) explores how innovation drives knowledge creation and vice versa, emphasizing that not all innovation leads to knowledge, but enduring innovation across diverse fields fosters theory and knowledge. JIK invites papers on innovations enhancing or generating knowledge, covering innovation processes, structures, outcomes, and behaviors at various levels. Articles in JIK examine knowledge-related changes promoting innovation for societal best practices.
JIK serves as a platform for high-quality studies undergoing double-blind peer review, ensuring global dissemination to scholars, practitioners, and policymakers who recognize innovation and knowledge as economic drivers. It publishes theoretical articles, empirical studies, case studies, reviews, and other content, addressing current trends and emerging topics in innovation and knowledge. The journal welcomes suggestions for special issues and encourages articles to showcase contextual differences and lessons for a broad audience.
In essence, JIK is an interdisciplinary journal dedicated to advancing theoretical and practical innovations and knowledge across multiple fields, including Economics, Business and Management, Engineering, Science, and Education.