{"title":"二阶有限阿贝尔群上的联合短最小零和子序列","authors":"Yushuang Fan, Qinghai Zhong","doi":"10.1016/j.jcta.2024.105984","DOIUrl":null,"url":null,"abstract":"Let <mml:math altimg=\"si1.svg\"><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo>,</mml:mo><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mo>,</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:math> be a finite abelian group and let <mml:math altimg=\"si2.svg\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> be the smallest integer <ce:italic>ℓ</ce:italic> such that every sequence over <mml:math altimg=\"si3.svg\"><mml:mi>G</mml:mi><mml:mo>∖</mml:mo><mml:mo stretchy=\"false\">{</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\"false\">}</mml:mo></mml:math> of length <ce:italic>ℓ</ce:italic> has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that <mml:math altimg=\"si4.svg\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=\"false\">)</mml:mo><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>3</mml:mn><mml:mi>n</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mn>1</mml:mn></mml:math> for every <mml:math altimg=\"si5.svg\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> and solved the corresponding inverse problem for groups <mml:math altimg=\"si6.svg\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math>, where <ce:italic>p</ce:italic> is a prime. In this paper, we determine the precise value of <mml:math altimg=\"si2.svg\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups <mml:math altimg=\"si7.svg\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math>, where <mml:math altimg=\"si5.svg\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math>, which confirms a conjecture of Gao, Geroldinger and Wang for all <mml:math altimg=\"si5.svg\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> except <mml:math altimg=\"si8.svg\"><mml:mi>n</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>4</mml:mn></mml:math>.","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"91 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On joint short minimal zero-sum subsequences over finite abelian groups of rank two\",\"authors\":\"Yushuang Fan, Qinghai Zhong\",\"doi\":\"10.1016/j.jcta.2024.105984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <mml:math altimg=\\\"si1.svg\\\"><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>G</mml:mi><mml:mo>,</mml:mo><mml:mo linebreak=\\\"badbreak\\\" linebreakstyle=\\\"after\\\">+</mml:mo><mml:mo>,</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> be a finite abelian group and let <mml:math altimg=\\\"si2.svg\\\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> be the smallest integer <ce:italic>ℓ</ce:italic> such that every sequence over <mml:math altimg=\\\"si3.svg\\\"><mml:mi>G</mml:mi><mml:mo>∖</mml:mo><mml:mo stretchy=\\\"false\\\">{</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\\\"false\\\">}</mml:mo></mml:math> of length <ce:italic>ℓ</ce:italic> has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that <mml:math altimg=\\\"si4.svg\\\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mn>3</mml:mn><mml:mi>n</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">+</mml:mo><mml:mn>1</mml:mn></mml:math> for every <mml:math altimg=\\\"si5.svg\\\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> and solved the corresponding inverse problem for groups <mml:math altimg=\\\"si6.svg\\\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math>, where <ce:italic>p</ce:italic> is a prime. In this paper, we determine the precise value of <mml:math altimg=\\\"si2.svg\\\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups <mml:math altimg=\\\"si7.svg\\\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math>, where <mml:math altimg=\\\"si5.svg\\\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math>, which confirms a conjecture of Gao, Geroldinger and Wang for all <mml:math altimg=\\\"si5.svg\\\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> except <mml:math altimg=\\\"si8.svg\\\"><mml:mi>n</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mn>4</mml:mn></mml:math>.\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcta.2024.105984\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.jcta.2024.105984","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On joint short minimal zero-sum subsequences over finite abelian groups of rank two
Let (G,+,0) be a finite abelian group and let ηN(G) be the smallest integer ℓ such that every sequence over G∖{0} of length ℓ has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that ηN(Cn⊕Cn)=3n+1 for every n≥2 and solved the corresponding inverse problem for groups Cp⊕Cp, where p is a prime. In this paper, we determine the precise value of ηN(G) for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups Cn⊕Cn, where n≥2, which confirms a conjecture of Gao, Geroldinger and Wang for all n≥2 except n=4.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.