二阶有限阿贝尔群上的联合短最小零和子序列

IF 0.9 2区 数学 Q2 MATHEMATICS
Yushuang Fan, Qinghai Zhong
{"title":"二阶有限阿贝尔群上的联合短最小零和子序列","authors":"Yushuang Fan, Qinghai Zhong","doi":"10.1016/j.jcta.2024.105984","DOIUrl":null,"url":null,"abstract":"Let <mml:math altimg=\"si1.svg\"><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo>,</mml:mo><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mo>,</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:math> be a finite abelian group and let <mml:math altimg=\"si2.svg\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> be the smallest integer <ce:italic>ℓ</ce:italic> such that every sequence over <mml:math altimg=\"si3.svg\"><mml:mi>G</mml:mi><mml:mo>∖</mml:mo><mml:mo stretchy=\"false\">{</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\"false\">}</mml:mo></mml:math> of length <ce:italic>ℓ</ce:italic> has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that <mml:math altimg=\"si4.svg\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=\"false\">)</mml:mo><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>3</mml:mn><mml:mi>n</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mn>1</mml:mn></mml:math> for every <mml:math altimg=\"si5.svg\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> and solved the corresponding inverse problem for groups <mml:math altimg=\"si6.svg\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math>, where <ce:italic>p</ce:italic> is a prime. In this paper, we determine the precise value of <mml:math altimg=\"si2.svg\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups <mml:math altimg=\"si7.svg\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math>, where <mml:math altimg=\"si5.svg\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math>, which confirms a conjecture of Gao, Geroldinger and Wang for all <mml:math altimg=\"si5.svg\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> except <mml:math altimg=\"si8.svg\"><mml:mi>n</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>4</mml:mn></mml:math>.","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"91 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On joint short minimal zero-sum subsequences over finite abelian groups of rank two\",\"authors\":\"Yushuang Fan, Qinghai Zhong\",\"doi\":\"10.1016/j.jcta.2024.105984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <mml:math altimg=\\\"si1.svg\\\"><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>G</mml:mi><mml:mo>,</mml:mo><mml:mo linebreak=\\\"badbreak\\\" linebreakstyle=\\\"after\\\">+</mml:mo><mml:mo>,</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> be a finite abelian group and let <mml:math altimg=\\\"si2.svg\\\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> be the smallest integer <ce:italic>ℓ</ce:italic> such that every sequence over <mml:math altimg=\\\"si3.svg\\\"><mml:mi>G</mml:mi><mml:mo>∖</mml:mo><mml:mo stretchy=\\\"false\\\">{</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\\\"false\\\">}</mml:mo></mml:math> of length <ce:italic>ℓ</ce:italic> has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that <mml:math altimg=\\\"si4.svg\\\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mn>3</mml:mn><mml:mi>n</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">+</mml:mo><mml:mn>1</mml:mn></mml:math> for every <mml:math altimg=\\\"si5.svg\\\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> and solved the corresponding inverse problem for groups <mml:math altimg=\\\"si6.svg\\\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math>, where <ce:italic>p</ce:italic> is a prime. In this paper, we determine the precise value of <mml:math altimg=\\\"si2.svg\\\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups <mml:math altimg=\\\"si7.svg\\\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math>, where <mml:math altimg=\\\"si5.svg\\\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math>, which confirms a conjecture of Gao, Geroldinger and Wang for all <mml:math altimg=\\\"si5.svg\\\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> except <mml:math altimg=\\\"si8.svg\\\"><mml:mi>n</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mn>4</mml:mn></mml:math>.\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcta.2024.105984\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.jcta.2024.105984","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设(G,+,0)是一个有限的阿贝尔群,设ηN(G)是最小的整数,使得G +{0}上的每一个长度为r的序列都有两个联合的最小零和子序列。2013年,Gao等人得到了n≥2时ηN(Cn⊕Cn)=3n+1,并求解了相应的群Cp⊕Cp的逆问题,其中p为素数。本文确定了所有2阶有限阿贝耳群的ηN(G)的精确值,并解决了n≥2的群Cn⊕Cn的逆问题,证实了Gao、Geroldinger和Wang对除n=4外所有n≥2的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On joint short minimal zero-sum subsequences over finite abelian groups of rank two
Let (G,+,0) be a finite abelian group and let ηN(G) be the smallest integer such that every sequence over G{0} of length has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that ηN(CnCn)=3n+1 for every n2 and solved the corresponding inverse problem for groups CpCp, where p is a prime. In this paper, we determine the precise value of ηN(G) for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups CnCn, where n2, which confirms a conjecture of Gao, Geroldinger and Wang for all n2 except n=4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信