{"title":"氮掺杂多孔碳包封FeNi/Ni2P纳米颗粒:析氧反应的高效电催化剂","authors":"Tianrui Yu, Yuhong Zhang, Jiaqi Zhou, Mingxin Feng, Zewu Zhang, Yuming Zhou","doi":"10.1007/s10853-024-10433-w","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient, stable, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) are crucial for advancing large-scale water electrolysis for hydrogen production. In this study, we present a novel electrocatalyst featuring FeNi/Ni<sub>2</sub>P nanoparticles encapsulated in nitrogen-doped porous carbon (FeNi/Ni<sub>2</sub>P@NC). The catalyst was prepared by pyrolyzing low-cost anion exchange resin (AER) loaded with non-precious metal salts, followed by phosphidation. The FeNi/Ni<sub>2</sub>P@NC catalyst benefits from the synergistic effects of the FeNi alloy, Ni<sub>2</sub>P phosphide, and N-doped porous carbon, which together enhance the number of active sites available for the OER. The large surface area of the material optimizes both electron transfer and mass diffusion pathways, leading to remarkable OER performance. At a current density of 10 mA cm<sup>−2</sup>, FeNi/Ni<sub>2</sub>P@NC demonstrates an overpotential of 323 mV and a Tafel slope of 60.3 mV dec<sup>−1</sup>, significantly outperforming the Tafel slope of 89.3 mV dec<sup>−1</sup> observed for the precious metal RuO<sub>2</sub>. Furthermore, the carbon shell layer effectively mitigates nanoparticle corrosion, thereby improving the long-term stability of the catalyst. This study presents a novel approach for developing efficient, stable, and cost-effective carbon-based catalysts for water electrolysis.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 47","pages":"21710 - 21720"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FeNi/Ni2P nanoparticles encapsulated in nitrogen-doped porous carbon: efficient electrocatalysts for oxygen evolution reaction\",\"authors\":\"Tianrui Yu, Yuhong Zhang, Jiaqi Zhou, Mingxin Feng, Zewu Zhang, Yuming Zhou\",\"doi\":\"10.1007/s10853-024-10433-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient, stable, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) are crucial for advancing large-scale water electrolysis for hydrogen production. In this study, we present a novel electrocatalyst featuring FeNi/Ni<sub>2</sub>P nanoparticles encapsulated in nitrogen-doped porous carbon (FeNi/Ni<sub>2</sub>P@NC). The catalyst was prepared by pyrolyzing low-cost anion exchange resin (AER) loaded with non-precious metal salts, followed by phosphidation. The FeNi/Ni<sub>2</sub>P@NC catalyst benefits from the synergistic effects of the FeNi alloy, Ni<sub>2</sub>P phosphide, and N-doped porous carbon, which together enhance the number of active sites available for the OER. The large surface area of the material optimizes both electron transfer and mass diffusion pathways, leading to remarkable OER performance. At a current density of 10 mA cm<sup>−2</sup>, FeNi/Ni<sub>2</sub>P@NC demonstrates an overpotential of 323 mV and a Tafel slope of 60.3 mV dec<sup>−1</sup>, significantly outperforming the Tafel slope of 89.3 mV dec<sup>−1</sup> observed for the precious metal RuO<sub>2</sub>. Furthermore, the carbon shell layer effectively mitigates nanoparticle corrosion, thereby improving the long-term stability of the catalyst. This study presents a novel approach for developing efficient, stable, and cost-effective carbon-based catalysts for water electrolysis.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"59 47\",\"pages\":\"21710 - 21720\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-024-10433-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10433-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
高效、稳定、经济的析氧反应电催化剂是推进大规模水电解制氢的关键。在这项研究中,我们提出了一种新的电催化剂,其特征是将FeNi/Ni2P纳米颗粒包裹在氮掺杂的多孔碳中(FeNi/Ni2P@NC)。采用负载非贵金属盐的低成本阴离子交换树脂(AER)热解、磷化制备催化剂。FeNi/Ni2P@NC催化剂受益于FeNi合金、磷化Ni2P和n掺杂多孔碳的协同效应,它们共同增加了OER可用的活性位点数量。材料的大表面积优化了电子传递和质量扩散途径,导致卓越的OER性能。在电流密度为10 mA cm−2时,FeNi/Ni2P@NC的过电位为323 mV, Tafel斜率为60.3 mV dec−1,明显优于贵金属RuO2的89.3 mV dec−1的Tafel斜率。此外,碳壳层有效地减轻了纳米颗粒的腐蚀,从而提高了催化剂的长期稳定性。本研究为开发高效、稳定、低成本的碳基水电解催化剂提供了一条新途径。图形抽象
FeNi/Ni2P nanoparticles encapsulated in nitrogen-doped porous carbon: efficient electrocatalysts for oxygen evolution reaction
Efficient, stable, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) are crucial for advancing large-scale water electrolysis for hydrogen production. In this study, we present a novel electrocatalyst featuring FeNi/Ni2P nanoparticles encapsulated in nitrogen-doped porous carbon (FeNi/Ni2P@NC). The catalyst was prepared by pyrolyzing low-cost anion exchange resin (AER) loaded with non-precious metal salts, followed by phosphidation. The FeNi/Ni2P@NC catalyst benefits from the synergistic effects of the FeNi alloy, Ni2P phosphide, and N-doped porous carbon, which together enhance the number of active sites available for the OER. The large surface area of the material optimizes both electron transfer and mass diffusion pathways, leading to remarkable OER performance. At a current density of 10 mA cm−2, FeNi/Ni2P@NC demonstrates an overpotential of 323 mV and a Tafel slope of 60.3 mV dec−1, significantly outperforming the Tafel slope of 89.3 mV dec−1 observed for the precious metal RuO2. Furthermore, the carbon shell layer effectively mitigates nanoparticle corrosion, thereby improving the long-term stability of the catalyst. This study presents a novel approach for developing efficient, stable, and cost-effective carbon-based catalysts for water electrolysis.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.