Marco S. Bianchi, Luigi Castiglioni, Silvia Penati, Marcia Tenser, Diego Trancanelli
{"title":"ABJ(M)中的分幅费米子Wilson环","authors":"Marco S. Bianchi, Luigi Castiglioni, Silvia Penati, Marcia Tenser, Diego Trancanelli","doi":"10.1007/JHEP12(2024)053","DOIUrl":null,"url":null,"abstract":"<p>Framing plays a central role in the evaluation of Wilson loops in theories with Chern-Simons actions. In pure Chern-Simons theory, it guarantees topological invariance, while in theories with matter like ABJ(M), our theory of interest, it is essential to enforce the cohomological equivalence of different BPS Wilson loops. This is the case for the 1/6 BPS bosonic and the 1/2 BPS fermionic Wilson loops, which have the same expectation value when computed as matrix model averages from localization. This equivalence holds at framing <span>\\( \\mathfrak{f} \\)</span> = 1, which has so far been a challenge to implement in perturbative evaluations. In this paper, we compute the expectation value of the 1/2 BPS fermionic circle of ABJ(M) theory up to two loops in perturbation theory <i>at generic framing</i>. This is achieved by a careful analysis of fermionic Feynman diagrams, isolating their framing dependent contributions and evaluating them in point-splitting regularization using framed contours. Specializing our result to <span>\\( \\mathfrak{f} \\)</span> = 1 we recover exactly the matrix model prediction, thus realizing for the first time a direct perturbative check of localization for this operator. We also generalize our computation to the case of a multiply wound circle, again matching the corresponding matrix model prediction.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 12","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP12(2024)053.pdf","citationCount":"0","resultStr":"{\"title\":\"Framing fermionic Wilson loops in ABJ(M)\",\"authors\":\"Marco S. Bianchi, Luigi Castiglioni, Silvia Penati, Marcia Tenser, Diego Trancanelli\",\"doi\":\"10.1007/JHEP12(2024)053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Framing plays a central role in the evaluation of Wilson loops in theories with Chern-Simons actions. In pure Chern-Simons theory, it guarantees topological invariance, while in theories with matter like ABJ(M), our theory of interest, it is essential to enforce the cohomological equivalence of different BPS Wilson loops. This is the case for the 1/6 BPS bosonic and the 1/2 BPS fermionic Wilson loops, which have the same expectation value when computed as matrix model averages from localization. This equivalence holds at framing <span>\\\\( \\\\mathfrak{f} \\\\)</span> = 1, which has so far been a challenge to implement in perturbative evaluations. In this paper, we compute the expectation value of the 1/2 BPS fermionic circle of ABJ(M) theory up to two loops in perturbation theory <i>at generic framing</i>. This is achieved by a careful analysis of fermionic Feynman diagrams, isolating their framing dependent contributions and evaluating them in point-splitting regularization using framed contours. Specializing our result to <span>\\\\( \\\\mathfrak{f} \\\\)</span> = 1 we recover exactly the matrix model prediction, thus realizing for the first time a direct perturbative check of localization for this operator. We also generalize our computation to the case of a multiply wound circle, again matching the corresponding matrix model prediction.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2024 12\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP12(2024)053.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP12(2024)053\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP12(2024)053","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Framing plays a central role in the evaluation of Wilson loops in theories with Chern-Simons actions. In pure Chern-Simons theory, it guarantees topological invariance, while in theories with matter like ABJ(M), our theory of interest, it is essential to enforce the cohomological equivalence of different BPS Wilson loops. This is the case for the 1/6 BPS bosonic and the 1/2 BPS fermionic Wilson loops, which have the same expectation value when computed as matrix model averages from localization. This equivalence holds at framing \( \mathfrak{f} \) = 1, which has so far been a challenge to implement in perturbative evaluations. In this paper, we compute the expectation value of the 1/2 BPS fermionic circle of ABJ(M) theory up to two loops in perturbation theory at generic framing. This is achieved by a careful analysis of fermionic Feynman diagrams, isolating their framing dependent contributions and evaluating them in point-splitting regularization using framed contours. Specializing our result to \( \mathfrak{f} \) = 1 we recover exactly the matrix model prediction, thus realizing for the first time a direct perturbative check of localization for this operator. We also generalize our computation to the case of a multiply wound circle, again matching the corresponding matrix model prediction.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).