{"title":"人工冻土冻融过程中水泥土蠕变特性及细观机理研究","authors":"Jie Zhou, Lujia Chen, Chao Ban, Wenqiang Zhao","doi":"10.1007/s12665-024-11964-w","DOIUrl":null,"url":null,"abstract":"<div><p>Cement reinforcement can effectively mitigate the frost heave and thaw settlement in soft clay during artificial ground freezing. Generally, soft clay has strong creep characteristics, which is also the main factor influencing the construction safety in coastal area. However, the mechanism of freeze–thaw action with cement reinforcement on the creep is really unclear. In this paper, the creep characteristics of cemented-soil after freeze–thaw have been investigated through triaxial creep test, and the micro-mechanism has been explored by Scanning Electron Microscopy (SEM) test and PFC numerical simulation. Three quantitative parameters of porosity, average particle size, and particle roundness have been extracted from SEM pictures. The results showed that creep deformation of cemented-soil is higher after freeze–thaw than before, with an increase as the freezing temperature drops. When combining freezing with cement reinforcement, there is an overall decrease in the creep behavior. It was observed from numerical simulation that the slip deformation of cemented-soil particles is generated from top to bottom and from outside in. Moreover, the porosity of cemented-soil increased from 24.5 to 28.5%, the particle roundness decreased from 2.11 to 1.75, while average particle size decreases from 16.67 to 13.88 μm during creep process. These shifts are explained by particles sliding and disordering, with debris migrating to the interior of pores. The results provide a scientific reference for the development of underground space in the coastal area.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of creep characteristics and microscopic mechanism in cemented-soil subjected to freeze–thaw during artificial ground freezing\",\"authors\":\"Jie Zhou, Lujia Chen, Chao Ban, Wenqiang Zhao\",\"doi\":\"10.1007/s12665-024-11964-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cement reinforcement can effectively mitigate the frost heave and thaw settlement in soft clay during artificial ground freezing. Generally, soft clay has strong creep characteristics, which is also the main factor influencing the construction safety in coastal area. However, the mechanism of freeze–thaw action with cement reinforcement on the creep is really unclear. In this paper, the creep characteristics of cemented-soil after freeze–thaw have been investigated through triaxial creep test, and the micro-mechanism has been explored by Scanning Electron Microscopy (SEM) test and PFC numerical simulation. Three quantitative parameters of porosity, average particle size, and particle roundness have been extracted from SEM pictures. The results showed that creep deformation of cemented-soil is higher after freeze–thaw than before, with an increase as the freezing temperature drops. When combining freezing with cement reinforcement, there is an overall decrease in the creep behavior. It was observed from numerical simulation that the slip deformation of cemented-soil particles is generated from top to bottom and from outside in. Moreover, the porosity of cemented-soil increased from 24.5 to 28.5%, the particle roundness decreased from 2.11 to 1.75, while average particle size decreases from 16.67 to 13.88 μm during creep process. These shifts are explained by particles sliding and disordering, with debris migrating to the interior of pores. The results provide a scientific reference for the development of underground space in the coastal area.</p></div>\",\"PeriodicalId\":542,\"journal\":{\"name\":\"Environmental Earth Sciences\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Earth Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12665-024-11964-w\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11964-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Investigation of creep characteristics and microscopic mechanism in cemented-soil subjected to freeze–thaw during artificial ground freezing
Cement reinforcement can effectively mitigate the frost heave and thaw settlement in soft clay during artificial ground freezing. Generally, soft clay has strong creep characteristics, which is also the main factor influencing the construction safety in coastal area. However, the mechanism of freeze–thaw action with cement reinforcement on the creep is really unclear. In this paper, the creep characteristics of cemented-soil after freeze–thaw have been investigated through triaxial creep test, and the micro-mechanism has been explored by Scanning Electron Microscopy (SEM) test and PFC numerical simulation. Three quantitative parameters of porosity, average particle size, and particle roundness have been extracted from SEM pictures. The results showed that creep deformation of cemented-soil is higher after freeze–thaw than before, with an increase as the freezing temperature drops. When combining freezing with cement reinforcement, there is an overall decrease in the creep behavior. It was observed from numerical simulation that the slip deformation of cemented-soil particles is generated from top to bottom and from outside in. Moreover, the porosity of cemented-soil increased from 24.5 to 28.5%, the particle roundness decreased from 2.11 to 1.75, while average particle size decreases from 16.67 to 13.88 μm during creep process. These shifts are explained by particles sliding and disordering, with debris migrating to the interior of pores. The results provide a scientific reference for the development of underground space in the coastal area.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.