迈向精确感知安全神经控制的网络物理系统

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Harikishan Thevendhriya;Sumana Ghosh;Debasmita Lohar
{"title":"迈向精确感知安全神经控制的网络物理系统","authors":"Harikishan Thevendhriya;Sumana Ghosh;Debasmita Lohar","doi":"10.1109/LES.2024.3444004","DOIUrl":null,"url":null,"abstract":"The safety of neural network (NN) controllers is crucial, specifically in the context of safety-critical Cyber-Physical System (CPS) applications. Current safety verification focuses on the reachability analysis, considering the bounded errors from the noisy environments or inaccurate implementations. However, it assumes real-valued arithmetic and does not account for the fixed-point quantization often used in the embedded systems. Some recent efforts have focused on generating the sound quantized NN implementations in fixed-point, ensuring specific target error bounds, but they assume the safety of NNs is already proven. To bridge this gap, we introduce Nexus, a novel two-phase framework combining reachability analysis with sound NN quantization. Nexus provides an end-to-end solution that ensures CPS safety within bounded errors while generating mixed-precision fixed-point implementations for the NN controllers. Additionally, we optimize these implementations for the automated parallelization on the FPGAs using a commercial HLS compiler, reducing the machine cycles significantly.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"397-400"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Precision-Aware Safe Neural-Controlled Cyber–Physical Systems\",\"authors\":\"Harikishan Thevendhriya;Sumana Ghosh;Debasmita Lohar\",\"doi\":\"10.1109/LES.2024.3444004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The safety of neural network (NN) controllers is crucial, specifically in the context of safety-critical Cyber-Physical System (CPS) applications. Current safety verification focuses on the reachability analysis, considering the bounded errors from the noisy environments or inaccurate implementations. However, it assumes real-valued arithmetic and does not account for the fixed-point quantization often used in the embedded systems. Some recent efforts have focused on generating the sound quantized NN implementations in fixed-point, ensuring specific target error bounds, but they assume the safety of NNs is already proven. To bridge this gap, we introduce Nexus, a novel two-phase framework combining reachability analysis with sound NN quantization. Nexus provides an end-to-end solution that ensures CPS safety within bounded errors while generating mixed-precision fixed-point implementations for the NN controllers. Additionally, we optimize these implementations for the automated parallelization on the FPGAs using a commercial HLS compiler, reducing the machine cycles significantly.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"397-400\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779582/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779582/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

神经网络(NN)控制器的安全性至关重要,特别是在安全关键型网络物理系统(CPS)应用的背景下。目前的安全验证侧重于可达性分析,考虑到噪声环境或不准确实现的有界错误。然而,它采用实值算法,没有考虑嵌入式系统中常用的定点量化。最近的一些研究集中于在定点上生成声音量化的神经网络实现,确保特定的目标误差范围,但他们假设神经网络的安全性已经被证明。为了弥补这一差距,我们引入了Nexus,这是一种结合可达性分析和声音神经网络量化的新型两阶段框架。Nexus提供了一个端到端解决方案,在为NN控制器生成混合精度定点实现的同时,确保CPS在有限错误内的安全性。此外,我们使用商用HLS编译器优化了这些fpga上的自动并行化实现,大大减少了机器周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Precision-Aware Safe Neural-Controlled Cyber–Physical Systems
The safety of neural network (NN) controllers is crucial, specifically in the context of safety-critical Cyber-Physical System (CPS) applications. Current safety verification focuses on the reachability analysis, considering the bounded errors from the noisy environments or inaccurate implementations. However, it assumes real-valued arithmetic and does not account for the fixed-point quantization often used in the embedded systems. Some recent efforts have focused on generating the sound quantized NN implementations in fixed-point, ensuring specific target error bounds, but they assume the safety of NNs is already proven. To bridge this gap, we introduce Nexus, a novel two-phase framework combining reachability analysis with sound NN quantization. Nexus provides an end-to-end solution that ensures CPS safety within bounded errors while generating mixed-precision fixed-point implementations for the NN controllers. Additionally, we optimize these implementations for the automated parallelization on the FPGAs using a commercial HLS compiler, reducing the machine cycles significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信