{"title":"迈向精确感知安全神经控制的网络物理系统","authors":"Harikishan Thevendhriya;Sumana Ghosh;Debasmita Lohar","doi":"10.1109/LES.2024.3444004","DOIUrl":null,"url":null,"abstract":"The safety of neural network (NN) controllers is crucial, specifically in the context of safety-critical Cyber-Physical System (CPS) applications. Current safety verification focuses on the reachability analysis, considering the bounded errors from the noisy environments or inaccurate implementations. However, it assumes real-valued arithmetic and does not account for the fixed-point quantization often used in the embedded systems. Some recent efforts have focused on generating the sound quantized NN implementations in fixed-point, ensuring specific target error bounds, but they assume the safety of NNs is already proven. To bridge this gap, we introduce Nexus, a novel two-phase framework combining reachability analysis with sound NN quantization. Nexus provides an end-to-end solution that ensures CPS safety within bounded errors while generating mixed-precision fixed-point implementations for the NN controllers. Additionally, we optimize these implementations for the automated parallelization on the FPGAs using a commercial HLS compiler, reducing the machine cycles significantly.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"397-400"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Precision-Aware Safe Neural-Controlled Cyber–Physical Systems\",\"authors\":\"Harikishan Thevendhriya;Sumana Ghosh;Debasmita Lohar\",\"doi\":\"10.1109/LES.2024.3444004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The safety of neural network (NN) controllers is crucial, specifically in the context of safety-critical Cyber-Physical System (CPS) applications. Current safety verification focuses on the reachability analysis, considering the bounded errors from the noisy environments or inaccurate implementations. However, it assumes real-valued arithmetic and does not account for the fixed-point quantization often used in the embedded systems. Some recent efforts have focused on generating the sound quantized NN implementations in fixed-point, ensuring specific target error bounds, but they assume the safety of NNs is already proven. To bridge this gap, we introduce Nexus, a novel two-phase framework combining reachability analysis with sound NN quantization. Nexus provides an end-to-end solution that ensures CPS safety within bounded errors while generating mixed-precision fixed-point implementations for the NN controllers. Additionally, we optimize these implementations for the automated parallelization on the FPGAs using a commercial HLS compiler, reducing the machine cycles significantly.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"397-400\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779582/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779582/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Toward Precision-Aware Safe Neural-Controlled Cyber–Physical Systems
The safety of neural network (NN) controllers is crucial, specifically in the context of safety-critical Cyber-Physical System (CPS) applications. Current safety verification focuses on the reachability analysis, considering the bounded errors from the noisy environments or inaccurate implementations. However, it assumes real-valued arithmetic and does not account for the fixed-point quantization often used in the embedded systems. Some recent efforts have focused on generating the sound quantized NN implementations in fixed-point, ensuring specific target error bounds, but they assume the safety of NNs is already proven. To bridge this gap, we introduce Nexus, a novel two-phase framework combining reachability analysis with sound NN quantization. Nexus provides an end-to-end solution that ensures CPS safety within bounded errors while generating mixed-precision fixed-point implementations for the NN controllers. Additionally, we optimize these implementations for the automated parallelization on the FPGAs using a commercial HLS compiler, reducing the machine cycles significantly.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.