Florentia Afentaki;Paula Carolina Lozano Duarte;Georgios Zervakis;Mehdi B. Tahoori
{"title":"在传感器印刷多层感知器训练过程中降低ADC前端成本","authors":"Florentia Afentaki;Paula Carolina Lozano Duarte;Georgios Zervakis;Mehdi B. Tahoori","doi":"10.1109/LES.2024.3447412","DOIUrl":null,"url":null,"abstract":"Printed electronics (PEs) technology offers a cost-effective and fully-customizable solution to computational needs beyond the capabilities of traditional silicon technologies, offering advantages, such as on-demand manufacturing and conformal, low-cost hardware. However, the low-resolution fabrication of PEs, which results in large feature sizes, poses a challenge for integrating complex designs like those of machine learning (ML) classification systems. Current literature optimizes only the multilayer perceptron (MLP) circuit within the classification system, while the cost of analog-to-digital converters (ADCs) is overlooked. Printed applications frequently require on-sensor processing, yet while the digital classifier has been extensively optimized, the analog-to-digital interfacing, specifically the ADCs, dominates the total area and energy consumption. In this letter, we target digital printed MLP classifiers and we propose the design of customized ADCs per MLP’s input which involves minimizing the distinct represented numbers for each input, simplifying thus the ADC’s circuitry. Incorporating this ADC optimization in the MLP training, enables eliminating ADC levels and the respective comparators, while still maintaining high classification accuracy. Our approach achieves \n<inline-formula> <tex-math>$11.2\\times $ </tex-math></inline-formula>\n lower ADC area for less than 5% accuracy drop across varying MLPs.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"353-356"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing ADC Front-End Costs During Training of On-Sensor Printed Multilayer Perceptrons\",\"authors\":\"Florentia Afentaki;Paula Carolina Lozano Duarte;Georgios Zervakis;Mehdi B. Tahoori\",\"doi\":\"10.1109/LES.2024.3447412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Printed electronics (PEs) technology offers a cost-effective and fully-customizable solution to computational needs beyond the capabilities of traditional silicon technologies, offering advantages, such as on-demand manufacturing and conformal, low-cost hardware. However, the low-resolution fabrication of PEs, which results in large feature sizes, poses a challenge for integrating complex designs like those of machine learning (ML) classification systems. Current literature optimizes only the multilayer perceptron (MLP) circuit within the classification system, while the cost of analog-to-digital converters (ADCs) is overlooked. Printed applications frequently require on-sensor processing, yet while the digital classifier has been extensively optimized, the analog-to-digital interfacing, specifically the ADCs, dominates the total area and energy consumption. In this letter, we target digital printed MLP classifiers and we propose the design of customized ADCs per MLP’s input which involves minimizing the distinct represented numbers for each input, simplifying thus the ADC’s circuitry. Incorporating this ADC optimization in the MLP training, enables eliminating ADC levels and the respective comparators, while still maintaining high classification accuracy. Our approach achieves \\n<inline-formula> <tex-math>$11.2\\\\times $ </tex-math></inline-formula>\\n lower ADC area for less than 5% accuracy drop across varying MLPs.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"353-356\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779581/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779581/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Reducing ADC Front-End Costs During Training of On-Sensor Printed Multilayer Perceptrons
Printed electronics (PEs) technology offers a cost-effective and fully-customizable solution to computational needs beyond the capabilities of traditional silicon technologies, offering advantages, such as on-demand manufacturing and conformal, low-cost hardware. However, the low-resolution fabrication of PEs, which results in large feature sizes, poses a challenge for integrating complex designs like those of machine learning (ML) classification systems. Current literature optimizes only the multilayer perceptron (MLP) circuit within the classification system, while the cost of analog-to-digital converters (ADCs) is overlooked. Printed applications frequently require on-sensor processing, yet while the digital classifier has been extensively optimized, the analog-to-digital interfacing, specifically the ADCs, dominates the total area and energy consumption. In this letter, we target digital printed MLP classifiers and we propose the design of customized ADCs per MLP’s input which involves minimizing the distinct represented numbers for each input, simplifying thus the ADC’s circuitry. Incorporating this ADC optimization in the MLP training, enables eliminating ADC levels and the respective comparators, while still maintaining high classification accuracy. Our approach achieves
$11.2\times $
lower ADC area for less than 5% accuracy drop across varying MLPs.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.