基于参数优化的倒频编码无芯片RFID标签设计方法

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Cong-Cuong Le;Trung-Kien Dao;Ngoc-Yen Pham;Thanh-Huong Nguyen
{"title":"基于参数优化的倒频编码无芯片RFID标签设计方法","authors":"Cong-Cuong Le;Trung-Kien Dao;Ngoc-Yen Pham;Thanh-Huong Nguyen","doi":"10.1109/LMWT.2024.3467311","DOIUrl":null,"url":null,"abstract":"Frequency-coded chipless radio frequency identification (RFID) tag design frequently suffers from the mutual coupling effect among resonant components, which causes the frequency shifting phenomenon. It is very difficult to thoroughly resolve this problem because of design requirements, such as high capacity and limited space on a single tag. In this letter, a novel design method based on particle swarm optimization (PSO) in combination with empirical Taguchi method (TM) is proposed. With this methodology, the optimal design parameters are automatically searched and fitted to comply with the resonance requirements at the given encoding frequencies. The proposed method was demonstrated with the design process of an I-shaped slot tag structure.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 12","pages":"1399-1402"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverted Frequency-Coded Chipless RFID Tag Design Methodology Based on Parameter Optimization\",\"authors\":\"Cong-Cuong Le;Trung-Kien Dao;Ngoc-Yen Pham;Thanh-Huong Nguyen\",\"doi\":\"10.1109/LMWT.2024.3467311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequency-coded chipless radio frequency identification (RFID) tag design frequently suffers from the mutual coupling effect among resonant components, which causes the frequency shifting phenomenon. It is very difficult to thoroughly resolve this problem because of design requirements, such as high capacity and limited space on a single tag. In this letter, a novel design method based on particle swarm optimization (PSO) in combination with empirical Taguchi method (TM) is proposed. With this methodology, the optimal design parameters are automatically searched and fitted to comply with the resonance requirements at the given encoding frequencies. The proposed method was demonstrated with the design process of an I-shaped slot tag structure.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"34 12\",\"pages\":\"1399-1402\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706593/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10706593/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

频率编码无芯片射频识别(RFID)标签设计经常受到谐振元件之间相互耦合的影响,从而导致频移现象。由于设计要求,例如单个标签上的高容量和有限空间,很难彻底解决这个问题。本文提出了一种基于粒子群优化(PSO)与经验田口方法(TM)相结合的新型设计方法。该方法自动搜索和拟合最优设计参数,以满足给定编码频率下的谐振要求。最后以一个i型槽型吊牌结构的设计过程为例进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverted Frequency-Coded Chipless RFID Tag Design Methodology Based on Parameter Optimization
Frequency-coded chipless radio frequency identification (RFID) tag design frequently suffers from the mutual coupling effect among resonant components, which causes the frequency shifting phenomenon. It is very difficult to thoroughly resolve this problem because of design requirements, such as high capacity and limited space on a single tag. In this letter, a novel design method based on particle swarm optimization (PSO) in combination with empirical Taguchi method (TM) is proposed. With this methodology, the optimal design parameters are automatically searched and fitted to comply with the resonance requirements at the given encoding frequencies. The proposed method was demonstrated with the design process of an I-shaped slot tag structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信