{"title":"基于分层超图消息传递网络的大规模流量预测","authors":"Jingcheng Wang;Yong Zhang;Yongli Hu;Baocai Yin","doi":"10.1109/TCSS.2024.3419008","DOIUrl":null,"url":null,"abstract":"Graph convolutional networks (GCNs) are widely used in social computation such as urban traffic prediction. However, when faced with city-level forecasting challenges, the graph-based deep learning methods struggle to process large-scale multivariate data effectively. To address the challenges of limited scalability, a traffic prediction framework based on a hypergraph message passing network (HMSG) is proposed in this article. The model represents the urban transportation network with hypergraph, where nodes denote transportation hubs and hyperedges represent their relationship at geographical and feature level. Compared with pairwise edges, hyperedges are more scalable and flexible, providing a more descriptive representation of traffic information. The HMSG algorithm updates node and hyperedge features in two steps, facilitating effective and efficient integration of hidden spatial features across layers. The proposed framework is evaluated on large-scale historical datasets and demonstrates its completion of city-scale traffic prediction tasks. The results also show that it matches the accuracy of existing traffic prediction methods on small-scale datasets. This validates the potential of the traffic prediction model based on the HMSG algorithm for intelligent transportation applications.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"11 6","pages":"7103-7113"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Traffic Prediction With Hierarchical Hypergraph Message Passing Networks\",\"authors\":\"Jingcheng Wang;Yong Zhang;Yongli Hu;Baocai Yin\",\"doi\":\"10.1109/TCSS.2024.3419008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph convolutional networks (GCNs) are widely used in social computation such as urban traffic prediction. However, when faced with city-level forecasting challenges, the graph-based deep learning methods struggle to process large-scale multivariate data effectively. To address the challenges of limited scalability, a traffic prediction framework based on a hypergraph message passing network (HMSG) is proposed in this article. The model represents the urban transportation network with hypergraph, where nodes denote transportation hubs and hyperedges represent their relationship at geographical and feature level. Compared with pairwise edges, hyperedges are more scalable and flexible, providing a more descriptive representation of traffic information. The HMSG algorithm updates node and hyperedge features in two steps, facilitating effective and efficient integration of hidden spatial features across layers. The proposed framework is evaluated on large-scale historical datasets and demonstrates its completion of city-scale traffic prediction tasks. The results also show that it matches the accuracy of existing traffic prediction methods on small-scale datasets. This validates the potential of the traffic prediction model based on the HMSG algorithm for intelligent transportation applications.\",\"PeriodicalId\":13044,\"journal\":{\"name\":\"IEEE Transactions on Computational Social Systems\",\"volume\":\"11 6\",\"pages\":\"7103-7113\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Social Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10671597/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10671597/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Large-Scale Traffic Prediction With Hierarchical Hypergraph Message Passing Networks
Graph convolutional networks (GCNs) are widely used in social computation such as urban traffic prediction. However, when faced with city-level forecasting challenges, the graph-based deep learning methods struggle to process large-scale multivariate data effectively. To address the challenges of limited scalability, a traffic prediction framework based on a hypergraph message passing network (HMSG) is proposed in this article. The model represents the urban transportation network with hypergraph, where nodes denote transportation hubs and hyperedges represent their relationship at geographical and feature level. Compared with pairwise edges, hyperedges are more scalable and flexible, providing a more descriptive representation of traffic information. The HMSG algorithm updates node and hyperedge features in two steps, facilitating effective and efficient integration of hidden spatial features across layers. The proposed framework is evaluated on large-scale historical datasets and demonstrates its completion of city-scale traffic prediction tasks. The results also show that it matches the accuracy of existing traffic prediction methods on small-scale datasets. This validates the potential of the traffic prediction model based on the HMSG algorithm for intelligent transportation applications.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.