{"title":"在多线程和多加速器执行下表征CNN吞吐量和能量","authors":"M A Muneeb;Rajesh Kedia","doi":"10.1109/LES.2024.3446896","DOIUrl":null,"url":null,"abstract":"Emerging applications and batch processing convolutional neural network (CNN) workloads require executing multiple CNNs concurrently. A wide variety of CNN accelerators are available today and we characterize the support for concurrency for CNNs in such accelerators. We use a commercial-off-the-shelf CNN accelerator in multithreading and multiaccelerator modes and identify that upto \n<inline-formula> <tex-math>$3.98\\times $ </tex-math></inline-formula>\n improvement in throughput and \n<inline-formula> <tex-math>$3.20\\times $ </tex-math></inline-formula>\n improvement in energy per inference can be obtained even with just a single accelerator. Our detailed characterization of 104 CNN models, for three different sizes of accelerator, reveals many insights that connect CNN characteristics to improvement in throughput and energy. We also present a design space and a low error throughput estimation model to explore such a design space.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"369-372"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing CNN Throughput and Energy Under Multithreaded and Multiaccelerator Execution\",\"authors\":\"M A Muneeb;Rajesh Kedia\",\"doi\":\"10.1109/LES.2024.3446896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging applications and batch processing convolutional neural network (CNN) workloads require executing multiple CNNs concurrently. A wide variety of CNN accelerators are available today and we characterize the support for concurrency for CNNs in such accelerators. We use a commercial-off-the-shelf CNN accelerator in multithreading and multiaccelerator modes and identify that upto \\n<inline-formula> <tex-math>$3.98\\\\times $ </tex-math></inline-formula>\\n improvement in throughput and \\n<inline-formula> <tex-math>$3.20\\\\times $ </tex-math></inline-formula>\\n improvement in energy per inference can be obtained even with just a single accelerator. Our detailed characterization of 104 CNN models, for three different sizes of accelerator, reveals many insights that connect CNN characteristics to improvement in throughput and energy. We also present a design space and a low error throughput estimation model to explore such a design space.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"369-372\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779975/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779975/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Characterizing CNN Throughput and Energy Under Multithreaded and Multiaccelerator Execution
Emerging applications and batch processing convolutional neural network (CNN) workloads require executing multiple CNNs concurrently. A wide variety of CNN accelerators are available today and we characterize the support for concurrency for CNNs in such accelerators. We use a commercial-off-the-shelf CNN accelerator in multithreading and multiaccelerator modes and identify that upto
$3.98\times $
improvement in throughput and
$3.20\times $
improvement in energy per inference can be obtained even with just a single accelerator. Our detailed characterization of 104 CNN models, for three different sizes of accelerator, reveals many insights that connect CNN characteristics to improvement in throughput and energy. We also present a design space and a low error throughput estimation model to explore such a design space.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.