在多线程和多加速器执行下表征CNN吞吐量和能量

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
M A Muneeb;Rajesh Kedia
{"title":"在多线程和多加速器执行下表征CNN吞吐量和能量","authors":"M A Muneeb;Rajesh Kedia","doi":"10.1109/LES.2024.3446896","DOIUrl":null,"url":null,"abstract":"Emerging applications and batch processing convolutional neural network (CNN) workloads require executing multiple CNNs concurrently. A wide variety of CNN accelerators are available today and we characterize the support for concurrency for CNNs in such accelerators. We use a commercial-off-the-shelf CNN accelerator in multithreading and multiaccelerator modes and identify that upto \n<inline-formula> <tex-math>$3.98\\times $ </tex-math></inline-formula>\n improvement in throughput and \n<inline-formula> <tex-math>$3.20\\times $ </tex-math></inline-formula>\n improvement in energy per inference can be obtained even with just a single accelerator. Our detailed characterization of 104 CNN models, for three different sizes of accelerator, reveals many insights that connect CNN characteristics to improvement in throughput and energy. We also present a design space and a low error throughput estimation model to explore such a design space.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"369-372"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing CNN Throughput and Energy Under Multithreaded and Multiaccelerator Execution\",\"authors\":\"M A Muneeb;Rajesh Kedia\",\"doi\":\"10.1109/LES.2024.3446896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging applications and batch processing convolutional neural network (CNN) workloads require executing multiple CNNs concurrently. A wide variety of CNN accelerators are available today and we characterize the support for concurrency for CNNs in such accelerators. We use a commercial-off-the-shelf CNN accelerator in multithreading and multiaccelerator modes and identify that upto \\n<inline-formula> <tex-math>$3.98\\\\times $ </tex-math></inline-formula>\\n improvement in throughput and \\n<inline-formula> <tex-math>$3.20\\\\times $ </tex-math></inline-formula>\\n improvement in energy per inference can be obtained even with just a single accelerator. Our detailed characterization of 104 CNN models, for three different sizes of accelerator, reveals many insights that connect CNN characteristics to improvement in throughput and energy. We also present a design space and a low error throughput estimation model to explore such a design space.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"369-372\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779975/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779975/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

新兴应用和批处理卷积神经网络(CNN)工作负载需要同时执行多个卷积神经网络。现在有各种各样的CNN加速器可用,我们描述了这些加速器对CNN并发性的支持。我们在多线程和多加速器模式下使用商用现成的CNN加速器,并确定即使只有一个加速器,也可以获得高达3.98倍的吞吐量改进和3.20倍的每次推理能量改进。我们对三种不同尺寸的加速器的104个CNN模型进行了详细的表征,揭示了将CNN特性与吞吐量和能量的改进联系起来的许多见解。我们还提出了一个设计空间和一个低误差吞吐量估计模型来探索这样的设计空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing CNN Throughput and Energy Under Multithreaded and Multiaccelerator Execution
Emerging applications and batch processing convolutional neural network (CNN) workloads require executing multiple CNNs concurrently. A wide variety of CNN accelerators are available today and we characterize the support for concurrency for CNNs in such accelerators. We use a commercial-off-the-shelf CNN accelerator in multithreading and multiaccelerator modes and identify that upto $3.98\times $ improvement in throughput and $3.20\times $ improvement in energy per inference can be obtained even with just a single accelerator. Our detailed characterization of 104 CNN models, for three different sizes of accelerator, reveals many insights that connect CNN characteristics to improvement in throughput and energy. We also present a design space and a low error throughput estimation model to explore such a design space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信