ViTSen:桥接视觉变压器和边缘计算与先进的内/近传感器处理

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Sepehr Tabrizchi;Brendan C. Reidy;Deniz Najafi;Shaahin Angizi;Ramtin Zand;Arman Roohi
{"title":"ViTSen:桥接视觉变压器和边缘计算与先进的内/近传感器处理","authors":"Sepehr Tabrizchi;Brendan C. Reidy;Deniz Najafi;Shaahin Angizi;Ramtin Zand;Arman Roohi","doi":"10.1109/LES.2024.3449240","DOIUrl":null,"url":null,"abstract":"This letter introduces \n<monospace>ViTSen</monospace>\n, optimizing vision transformers (ViTs) for resource-constrained edge devices. It features an in-sensor image compression technique to reduce data conversion and transmission power costs effectively. Further, \n<monospace>ViTSen</monospace>\n incorporates a ReRAM array, allowing efficient near-sensor analog convolution. This integration, novel pixel reading, and peripheral circuitry decrease the reliance on analog buffers and converters, significantly lowering power consumption. To make ViTSen compatible, several established ViT algorithms have undergone quantization and channel reduction. Circuit-to-application co-simulation results show that \n<monospace>ViTSen</monospace>\n maintains accuracy comparable to a full-precision baseline across various data precisions, achieving an efficiency of ~3.1 TOp/s/W.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"341-344"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ViTSen: Bridging Vision Transformers and Edge Computing With Advanced In/Near-Sensor Processing\",\"authors\":\"Sepehr Tabrizchi;Brendan C. Reidy;Deniz Najafi;Shaahin Angizi;Ramtin Zand;Arman Roohi\",\"doi\":\"10.1109/LES.2024.3449240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces \\n<monospace>ViTSen</monospace>\\n, optimizing vision transformers (ViTs) for resource-constrained edge devices. It features an in-sensor image compression technique to reduce data conversion and transmission power costs effectively. Further, \\n<monospace>ViTSen</monospace>\\n incorporates a ReRAM array, allowing efficient near-sensor analog convolution. This integration, novel pixel reading, and peripheral circuitry decrease the reliance on analog buffers and converters, significantly lowering power consumption. To make ViTSen compatible, several established ViT algorithms have undergone quantization and channel reduction. Circuit-to-application co-simulation results show that \\n<monospace>ViTSen</monospace>\\n maintains accuracy comparable to a full-precision baseline across various data precisions, achieving an efficiency of ~3.1 TOp/s/W.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"341-344\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10779968/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779968/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

这封信介绍了ViTSen,为资源受限的边缘设备优化视觉变压器(vit)。它具有传感器内图像压缩技术,可以有效地减少数据转换和传输功率成本。此外,ViTSen集成了一个ReRAM阵列,允许高效的近传感器模拟卷积。这种集成、新颖的像素读取和外围电路减少了对模拟缓冲器和转换器的依赖,显著降低了功耗。为了使ViTSen兼容,几种已建立的ViT算法进行了量化和信道缩减。电路到应用的联合仿真结果表明,ViTSen在各种数据精度下保持与全精度基线相当的精度,实现了~3.1 TOp/s/W的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ViTSen: Bridging Vision Transformers and Edge Computing With Advanced In/Near-Sensor Processing
This letter introduces ViTSen , optimizing vision transformers (ViTs) for resource-constrained edge devices. It features an in-sensor image compression technique to reduce data conversion and transmission power costs effectively. Further, ViTSen incorporates a ReRAM array, allowing efficient near-sensor analog convolution. This integration, novel pixel reading, and peripheral circuitry decrease the reliance on analog buffers and converters, significantly lowering power consumption. To make ViTSen compatible, several established ViT algorithms have undergone quantization and channel reduction. Circuit-to-application co-simulation results show that ViTSen maintains accuracy comparable to a full-precision baseline across various data precisions, achieving an efficiency of ~3.1 TOp/s/W.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信