{"title":"NIR-II光驱动多功能纳米酶PS@CS有效治疗黑色素瘤和肿瘤手术后感染","authors":"Rui Gong, Decai Yang, Cuijuan Zhang, Ghulam Abbas, Beiping Miao, Yueyue Liang, Jianing Xu, Xueyang Fang, Hui Ding","doi":"10.1021/acs.nanolett.4c05389","DOIUrl":null,"url":null,"abstract":"Melanoma, the most prevalent form of skin cancer, is primarily treated with surgical intervention. However, complete tumor cell removal is challenging, and surgical wounds are prone to infection, complicating treatment and increasing costs. The successful treatment of melanoma generally requires multifunctional agents that are coordinated in tumor therapy and wound healing. In this study, we developed platinum (Pt)- and selenium (Se)-based nanozymes, Pt-Se@Chitosan (PS@CS), which exhibit synergistic antitumor and bactericidal efficacy attributed to their multienzyme activity and strong photothermal conversion efficiency. Furthermore, we engineered PS@CS hydrogels capable of inhibiting tumor regrowth postsurgery and accelerating healing of infected wounds. The PS@CS and PS@CS hydrogels presented herein incorporate characteristics including catalytic therapy, photothermal therapy, antibacterial properties, and skin damage healing, providing an innovative and comprehensive therapeutic approach for melanoma treatment.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"86 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NIR-II Light-Driven Multifunctional Nanozymes PS@CS for Efficient Therapy against Melanoma and Post-tumor Surgery Infection\",\"authors\":\"Rui Gong, Decai Yang, Cuijuan Zhang, Ghulam Abbas, Beiping Miao, Yueyue Liang, Jianing Xu, Xueyang Fang, Hui Ding\",\"doi\":\"10.1021/acs.nanolett.4c05389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melanoma, the most prevalent form of skin cancer, is primarily treated with surgical intervention. However, complete tumor cell removal is challenging, and surgical wounds are prone to infection, complicating treatment and increasing costs. The successful treatment of melanoma generally requires multifunctional agents that are coordinated in tumor therapy and wound healing. In this study, we developed platinum (Pt)- and selenium (Se)-based nanozymes, Pt-Se@Chitosan (PS@CS), which exhibit synergistic antitumor and bactericidal efficacy attributed to their multienzyme activity and strong photothermal conversion efficiency. Furthermore, we engineered PS@CS hydrogels capable of inhibiting tumor regrowth postsurgery and accelerating healing of infected wounds. The PS@CS and PS@CS hydrogels presented herein incorporate characteristics including catalytic therapy, photothermal therapy, antibacterial properties, and skin damage healing, providing an innovative and comprehensive therapeutic approach for melanoma treatment.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05389\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05389","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
NIR-II Light-Driven Multifunctional Nanozymes PS@CS for Efficient Therapy against Melanoma and Post-tumor Surgery Infection
Melanoma, the most prevalent form of skin cancer, is primarily treated with surgical intervention. However, complete tumor cell removal is challenging, and surgical wounds are prone to infection, complicating treatment and increasing costs. The successful treatment of melanoma generally requires multifunctional agents that are coordinated in tumor therapy and wound healing. In this study, we developed platinum (Pt)- and selenium (Se)-based nanozymes, Pt-Se@Chitosan (PS@CS), which exhibit synergistic antitumor and bactericidal efficacy attributed to their multienzyme activity and strong photothermal conversion efficiency. Furthermore, we engineered PS@CS hydrogels capable of inhibiting tumor regrowth postsurgery and accelerating healing of infected wounds. The PS@CS and PS@CS hydrogels presented herein incorporate characteristics including catalytic therapy, photothermal therapy, antibacterial properties, and skin damage healing, providing an innovative and comprehensive therapeutic approach for melanoma treatment.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.