利用原子尺度热能探测表面反键节点的特征

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Seungil Baek , Eui-Cheol Shin , Jaeuk Seo , Yong-Hyun Kim
{"title":"利用原子尺度热能探测表面反键节点的特征","authors":"Seungil Baek ,&nbsp;Eui-Cheol Shin ,&nbsp;Jaeuk Seo ,&nbsp;Yong-Hyun Kim","doi":"10.1016/j.apsusc.2024.162027","DOIUrl":null,"url":null,"abstract":"<div><div>Atomic-scale thermopower connotes rich physics of wave functions based on quantum transport characteristics. Previous studies revealed that vestiges of wave function could be utilized for the nanoscale thermopower domain. However, how the disappearance of wave function would be represented in coherent thermopower remains to be elucidated. In this paper, using first-principles-based scanning Seebeck microscopy, we demonstrate that atomic-scale thermopower sensitively responds to antibonding nodal lines. Utilizing the linear tetrahedron method (LTM), we validate the fidelity of local thermopower even with relatively sparse <em>k</em>-points sampling. Notably, the LTM furnishes reasonable thermopower evaluation near the singular points in the density of states. Our calculations identified that the next-nearest eigenstate from the Fermi level provokes sudden variations of thermopower profiles near antibonding nodal lines. Direct comparison with scanning tunneling microscopy simulation has pointed out the distinguished node-detection competence of local thermopower. We believe that this study highlights the unique potential of coherent thermopower as a tool to unearth fundamental information about wave function overlap not to be measured before.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"685 ","pages":"Article 162027"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting signatures of surface antibonding nodes through atomic-scale thermopower\",\"authors\":\"Seungil Baek ,&nbsp;Eui-Cheol Shin ,&nbsp;Jaeuk Seo ,&nbsp;Yong-Hyun Kim\",\"doi\":\"10.1016/j.apsusc.2024.162027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atomic-scale thermopower connotes rich physics of wave functions based on quantum transport characteristics. Previous studies revealed that vestiges of wave function could be utilized for the nanoscale thermopower domain. However, how the disappearance of wave function would be represented in coherent thermopower remains to be elucidated. In this paper, using first-principles-based scanning Seebeck microscopy, we demonstrate that atomic-scale thermopower sensitively responds to antibonding nodal lines. Utilizing the linear tetrahedron method (LTM), we validate the fidelity of local thermopower even with relatively sparse <em>k</em>-points sampling. Notably, the LTM furnishes reasonable thermopower evaluation near the singular points in the density of states. Our calculations identified that the next-nearest eigenstate from the Fermi level provokes sudden variations of thermopower profiles near antibonding nodal lines. Direct comparison with scanning tunneling microscopy simulation has pointed out the distinguished node-detection competence of local thermopower. We believe that this study highlights the unique potential of coherent thermopower as a tool to unearth fundamental information about wave function overlap not to be measured before.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"685 \",\"pages\":\"Article 162027\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433224027430\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433224027430","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

原子尺度的热能蕴涵着丰富的基于量子输运特性的波函数物理学。以往的研究表明,波函数的残余可以用于纳米级热电领域。然而,波函数的消失如何在相干热能中表示仍有待阐明。在本文中,使用基于第一性原理的扫描塞贝克显微镜,我们证明了原子尺度的热功率对反键节点线的敏感响应。利用线性四面体方法(LTM),即使在相对稀疏的k点采样下,我们也验证了局部热电的保真度。值得注意的是,LTM在态密度的奇异点附近提供了合理的热功率评估。我们的计算发现,离费米能级最近的本征态会在反键节点线附近引起热功率谱的突然变化。通过与扫描隧道显微镜模拟的直接比较,指出了局部热功率的节点检测能力。我们认为,这项研究突出了相干热能作为一种工具的独特潜力,可以揭示以前未测量的波函数重叠的基本信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Detecting signatures of surface antibonding nodes through atomic-scale thermopower

Detecting signatures of surface antibonding nodes through atomic-scale thermopower

Detecting signatures of surface antibonding nodes through atomic-scale thermopower
Atomic-scale thermopower connotes rich physics of wave functions based on quantum transport characteristics. Previous studies revealed that vestiges of wave function could be utilized for the nanoscale thermopower domain. However, how the disappearance of wave function would be represented in coherent thermopower remains to be elucidated. In this paper, using first-principles-based scanning Seebeck microscopy, we demonstrate that atomic-scale thermopower sensitively responds to antibonding nodal lines. Utilizing the linear tetrahedron method (LTM), we validate the fidelity of local thermopower even with relatively sparse k-points sampling. Notably, the LTM furnishes reasonable thermopower evaluation near the singular points in the density of states. Our calculations identified that the next-nearest eigenstate from the Fermi level provokes sudden variations of thermopower profiles near antibonding nodal lines. Direct comparison with scanning tunneling microscopy simulation has pointed out the distinguished node-detection competence of local thermopower. We believe that this study highlights the unique potential of coherent thermopower as a tool to unearth fundamental information about wave function overlap not to be measured before.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信