{"title":"低成本连杆弹簧伸缩杆滑欠驱动自适应机械手的设计、建模与验证。","authors":"Gengbiao Chen, Hanxiao Wang, Lairong Yin","doi":"10.1088/1748-3190/ad9aee","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the design of an underactuated adaptive humanoid Manipulator (UAHM) featuring a link-spring telescopic rod-slide mechanism, which is capable of basic human-like grasping functions. Initially, the mechanical structure of the UAHM is introduced, with a detailed exposition of its transmission mode, finger architecture, and overall configuration. Subsequently, the kinematic and static models of the UAHM are delineated, elucidating the relationship between the phalangeal contact forces, contact positions, and bending angles during both fingertip and envelope grasping. Finally, the experimental platform has been established, and the UAHM prototype has undergone testing, demonstrating commendable dexterity, adaptability, and grasping capabilities. Furthermore, the results of comparative numerical analyses corroborate the validity of the static model.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, modeling and validation of a low-cost linkage-spring telescopic rod-slide underactuated adaptive robotic hand.\",\"authors\":\"Gengbiao Chen, Hanxiao Wang, Lairong Yin\",\"doi\":\"10.1088/1748-3190/ad9aee\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the design of an underactuated adaptive humanoid Manipulator (UAHM) featuring a link-spring telescopic rod-slide mechanism, which is capable of basic human-like grasping functions. Initially, the mechanical structure of the UAHM is introduced, with a detailed exposition of its transmission mode, finger architecture, and overall configuration. Subsequently, the kinematic and static models of the UAHM are delineated, elucidating the relationship between the phalangeal contact forces, contact positions, and bending angles during both fingertip and envelope grasping. Finally, the experimental platform has been established, and the UAHM prototype has undergone testing, demonstrating commendable dexterity, adaptability, and grasping capabilities. Furthermore, the results of comparative numerical analyses corroborate the validity of the static model.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad9aee\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad9aee","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Design, modeling and validation of a low-cost linkage-spring telescopic rod-slide underactuated adaptive robotic hand.
This paper presents the design of an underactuated adaptive humanoid Manipulator (UAHM) featuring a link-spring telescopic rod-slide mechanism, which is capable of basic human-like grasping functions. Initially, the mechanical structure of the UAHM is introduced, with a detailed exposition of its transmission mode, finger architecture, and overall configuration. Subsequently, the kinematic and static models of the UAHM are delineated, elucidating the relationship between the phalangeal contact forces, contact positions, and bending angles during both fingertip and envelope grasping. Finally, the experimental platform has been established, and the UAHM prototype has undergone testing, demonstrating commendable dexterity, adaptability, and grasping capabilities. Furthermore, the results of comparative numerical analyses corroborate the validity of the static model.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.