{"title":"脱细胞软骨基质与热敏水凝胶支架修复骨软骨缺损。","authors":"Shengtao Zou, Guochao Xu, Zhenyu Zheng, Tianming Chen, Yixing Huang","doi":"10.1089/ten.tea.2024.0231","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, acellular cartilage matrix (ACM) was modified with poly-l-lysine/hyaluronic acid (PLL/HA) multilayers via detergent-enzyme chemical digestion and layer-by-layer self-assembly technology. This modified ACM was then loaded with Transforming Growth Factor Beta 3 (TGF-β3) and incorporated into a thermosensitive hydrogel (TH) to create a HA/PLL-ACM/TH composite scaffold with sustained-release function. This study aimed to evaluate the efficacy of this novel composite scaffold in promoting chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and facilitating osteochondral defect repair. <i>In vitro</i>, isolated, and cultured rat BMSCs were inoculated in equal amounts into TH, ACM/TH, and HA/PLL-ACM/TH groups, with or without TGF-β3 supplementation, for 21 days. Western blot (WB) analysis and immunofluorescence staining were employed to assess the expression levels of collagen II, aggrecan, and SOX-9. <i>In vivo</i>, osteochondral defect was created in the Sprague-Dawley rat trochlea using microdrilling. TH, ACM/TH, and HA/PLL-ACM/TH scaffolds, with or without TGF-β3, were implanted into the defect. After 6 weeks, the repairs were evaluated macroscopically, using Micro computed tomography (micro-CT), histological analysis, and immunohistochemistry. The results demonstrated that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 significantly upregulated the expression of collagen II, aggrecan, and SOX-9 compared with the control and other experimental groups. Furthermore, at 6 weeks postsurgery, the HA/PLL-ACM/TH group loaded with TGF-β3 exhibited superior tissue formation on the joint surface, as confirmed by micro-CT and histological evidence, indicating improved osteochondral repair. These findings suggest that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 holds promise as a therapeutic strategy for osteochondral defect and offers a novel approach for utilizing acellular cartilage microfilaments.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repair of Osteochondral Defect with Acellular Cartilage Matrix and Thermosensitive Hydrogel Scaffold.\",\"authors\":\"Shengtao Zou, Guochao Xu, Zhenyu Zheng, Tianming Chen, Yixing Huang\",\"doi\":\"10.1089/ten.tea.2024.0231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present study, acellular cartilage matrix (ACM) was modified with poly-l-lysine/hyaluronic acid (PLL/HA) multilayers via detergent-enzyme chemical digestion and layer-by-layer self-assembly technology. This modified ACM was then loaded with Transforming Growth Factor Beta 3 (TGF-β3) and incorporated into a thermosensitive hydrogel (TH) to create a HA/PLL-ACM/TH composite scaffold with sustained-release function. This study aimed to evaluate the efficacy of this novel composite scaffold in promoting chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and facilitating osteochondral defect repair. <i>In vitro</i>, isolated, and cultured rat BMSCs were inoculated in equal amounts into TH, ACM/TH, and HA/PLL-ACM/TH groups, with or without TGF-β3 supplementation, for 21 days. Western blot (WB) analysis and immunofluorescence staining were employed to assess the expression levels of collagen II, aggrecan, and SOX-9. <i>In vivo</i>, osteochondral defect was created in the Sprague-Dawley rat trochlea using microdrilling. TH, ACM/TH, and HA/PLL-ACM/TH scaffolds, with or without TGF-β3, were implanted into the defect. After 6 weeks, the repairs were evaluated macroscopically, using Micro computed tomography (micro-CT), histological analysis, and immunohistochemistry. The results demonstrated that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 significantly upregulated the expression of collagen II, aggrecan, and SOX-9 compared with the control and other experimental groups. Furthermore, at 6 weeks postsurgery, the HA/PLL-ACM/TH group loaded with TGF-β3 exhibited superior tissue formation on the joint surface, as confirmed by micro-CT and histological evidence, indicating improved osteochondral repair. These findings suggest that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 holds promise as a therapeutic strategy for osteochondral defect and offers a novel approach for utilizing acellular cartilage microfilaments.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.tea.2024.0231\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tea.2024.0231","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
本研究以聚赖氨酸/透明质酸(PLL/HA)为载体,通过清洁剂-酶化学消化和逐层自组装技术对脱细胞软骨基质(ACM)进行了多层修饰。然后将改性后的ACM加载转化生长因子β3 (TGF-β3),并将其纳入热敏水凝胶(TH)中,制成具有缓释功能的HA/PLL-ACM/TH复合支架。本研究旨在评估这种新型复合支架促进骨髓间充质干细胞(BMSCs)成软骨分化和促进骨软骨缺损修复的功效。在体外,将分离的和培养的大鼠骨髓间充质干细胞按等量接种于TH组、ACM/TH组和HA/PLL-ACM/TH组,添加或不添加TGF-β3,接种21天。采用Western blot (WB)分析和免疫荧光染色评估II型胶原、聚集蛋白和SOX-9的表达水平。在体内,采用微钻法在Sprague-Dawley大鼠滑车上制造骨软骨缺损。将含TGF-β3或不含TGF-β3的TH、ACM/TH、HA/PLL-ACM/TH支架植入缺损。6周后,通过显微计算机断层扫描(Micro - ct)、组织学分析和免疫组织化学对修复进行宏观评估。结果表明,与对照组和其他实验组相比,负载TGF-β3的HA/PLL-ACM/TH支架显著上调了II型胶原、聚集蛋白和SOX-9的表达。此外,在术后6周,通过显微ct和组织学证据证实,加载TGF-β3的HA/PLL-ACM/TH组关节表面的组织形成优于TGF-β3组,骨软骨修复得到改善。这些发现表明,负载TGF-β3的HA/PLL-ACM/TH支架有望成为骨软骨缺损的治疗策略,并为利用脱细胞软骨微丝提供了一种新的途径。
Repair of Osteochondral Defect with Acellular Cartilage Matrix and Thermosensitive Hydrogel Scaffold.
In the present study, acellular cartilage matrix (ACM) was modified with poly-l-lysine/hyaluronic acid (PLL/HA) multilayers via detergent-enzyme chemical digestion and layer-by-layer self-assembly technology. This modified ACM was then loaded with Transforming Growth Factor Beta 3 (TGF-β3) and incorporated into a thermosensitive hydrogel (TH) to create a HA/PLL-ACM/TH composite scaffold with sustained-release function. This study aimed to evaluate the efficacy of this novel composite scaffold in promoting chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and facilitating osteochondral defect repair. In vitro, isolated, and cultured rat BMSCs were inoculated in equal amounts into TH, ACM/TH, and HA/PLL-ACM/TH groups, with or without TGF-β3 supplementation, for 21 days. Western blot (WB) analysis and immunofluorescence staining were employed to assess the expression levels of collagen II, aggrecan, and SOX-9. In vivo, osteochondral defect was created in the Sprague-Dawley rat trochlea using microdrilling. TH, ACM/TH, and HA/PLL-ACM/TH scaffolds, with or without TGF-β3, were implanted into the defect. After 6 weeks, the repairs were evaluated macroscopically, using Micro computed tomography (micro-CT), histological analysis, and immunohistochemistry. The results demonstrated that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 significantly upregulated the expression of collagen II, aggrecan, and SOX-9 compared with the control and other experimental groups. Furthermore, at 6 weeks postsurgery, the HA/PLL-ACM/TH group loaded with TGF-β3 exhibited superior tissue formation on the joint surface, as confirmed by micro-CT and histological evidence, indicating improved osteochondral repair. These findings suggest that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 holds promise as a therapeutic strategy for osteochondral defect and offers a novel approach for utilizing acellular cartilage microfilaments.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.