延迟反馈振荡器复制多路网络的动态:波前传播和随机共振。

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Neural Networks Pub Date : 2025-03-01 Epub Date: 2024-11-30 DOI:10.1016/j.neunet.2024.106939
Anna Zakharova, Vladimir V Semenov
{"title":"延迟反馈振荡器复制多路网络的动态:波前传播和随机共振。","authors":"Anna Zakharova, Vladimir V Semenov","doi":"10.1016/j.neunet.2024.106939","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread development and use of neural networks have significantly enriched a wide range of computer algorithms and promise higher speed at lower cost. However, the imitation of neural networks by means of modern computing substrates is highly inefficient, whereas physical realization of large scale networks remains challenging. Fortunately, delayed-feedback oscillators, being much easier to realize experimentally, represent promising candidates for the empirical implementation of neural networks and next generation computing architectures. In the current research, we demonstrate that coupled bistable delayed-feedback oscillators emulate a multilayer network, where one single-layer network is connected to another single-layer network through coupling between replica nodes, i.e. the multiplex network. We show that all the aspects of the multiplexing impact on wavefront propagation and stochastic resonance identified in multilayer networks of bistable oscillators are entirely reproduced in the dynamics of time-delay oscillators. In particular, varying the coupling strength allows suppressing and enhancing the effect of stochastic resonance, as well as controlling the speed and direction of both deterministic and stochastic wavefront propagation. All the considered effects are studied in numerical simulations and confirmed in physical experiments, showing an excellent correspondence and disclosing thereby the robustness of the observed phenomena.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106939"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delayed-feedback oscillators replicate the dynamics of multiplex networks: Wavefront propagation and stochastic resonance.\",\"authors\":\"Anna Zakharova, Vladimir V Semenov\",\"doi\":\"10.1016/j.neunet.2024.106939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread development and use of neural networks have significantly enriched a wide range of computer algorithms and promise higher speed at lower cost. However, the imitation of neural networks by means of modern computing substrates is highly inefficient, whereas physical realization of large scale networks remains challenging. Fortunately, delayed-feedback oscillators, being much easier to realize experimentally, represent promising candidates for the empirical implementation of neural networks and next generation computing architectures. In the current research, we demonstrate that coupled bistable delayed-feedback oscillators emulate a multilayer network, where one single-layer network is connected to another single-layer network through coupling between replica nodes, i.e. the multiplex network. We show that all the aspects of the multiplexing impact on wavefront propagation and stochastic resonance identified in multilayer networks of bistable oscillators are entirely reproduced in the dynamics of time-delay oscillators. In particular, varying the coupling strength allows suppressing and enhancing the effect of stochastic resonance, as well as controlling the speed and direction of both deterministic and stochastic wavefront propagation. All the considered effects are studied in numerical simulations and confirmed in physical experiments, showing an excellent correspondence and disclosing thereby the robustness of the observed phenomena.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"183 \",\"pages\":\"106939\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106939\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106939","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

神经网络的广泛发展和使用极大地丰富了各种计算机算法,并承诺以更低的成本实现更高的速度。然而,利用现代计算基板来模拟神经网络是非常低效的,而大规模网络的物理实现仍然具有挑战性。幸运的是,延迟反馈振荡器更容易在实验中实现,代表了神经网络和下一代计算架构的经验实现的有希望的候选者。在当前的研究中,我们证明了耦合双稳态延迟反馈振荡器模拟了一个多层网络,其中一个单层网络通过复制节点之间的耦合连接到另一个单层网络,即多路网络。我们表明,在双稳振荡器的多层网络中,多路复用对波前传播和随机共振的影响的所有方面都完全再现在时滞振荡器的动力学中。特别是,改变耦合强度可以抑制和增强随机共振的影响,以及控制确定性和随机波前传播的速度和方向。所有考虑的效应都在数值模拟中进行了研究,并在物理实验中得到了证实,显示出良好的对应关系,从而揭示了所观察到的现象的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delayed-feedback oscillators replicate the dynamics of multiplex networks: Wavefront propagation and stochastic resonance.

The widespread development and use of neural networks have significantly enriched a wide range of computer algorithms and promise higher speed at lower cost. However, the imitation of neural networks by means of modern computing substrates is highly inefficient, whereas physical realization of large scale networks remains challenging. Fortunately, delayed-feedback oscillators, being much easier to realize experimentally, represent promising candidates for the empirical implementation of neural networks and next generation computing architectures. In the current research, we demonstrate that coupled bistable delayed-feedback oscillators emulate a multilayer network, where one single-layer network is connected to another single-layer network through coupling between replica nodes, i.e. the multiplex network. We show that all the aspects of the multiplexing impact on wavefront propagation and stochastic resonance identified in multilayer networks of bistable oscillators are entirely reproduced in the dynamics of time-delay oscillators. In particular, varying the coupling strength allows suppressing and enhancing the effect of stochastic resonance, as well as controlling the speed and direction of both deterministic and stochastic wavefront propagation. All the considered effects are studied in numerical simulations and confirmed in physical experiments, showing an excellent correspondence and disclosing thereby the robustness of the observed phenomena.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信