Bojia Liu, Conghui Zheng, Fuhui Sun, Xiaoyan Wang, Li Pan
{"title":"CDCGAN:基于类分布感知的条件gan的非平衡节点分类的少数增强。","authors":"Bojia Liu, Conghui Zheng, Fuhui Sun, Xiaoyan Wang, Li Pan","doi":"10.1016/j.neunet.2024.106933","DOIUrl":null,"url":null,"abstract":"<p><p>Node classification is a fundamental task of Graph Neural Networks (GNNs). However, GNN models tend to suffer from the class imbalance problem which deteriorates the representation ability of minority classes, thus leading to unappealing classification performance. The most straightforward and effective solution is to augment the minority samples for balancing the representations of majority and minority classes. Previous methods leverage a limited number of labeled nodes to generate new samples, without considering the overall class characteristics and failing to reflect the underlying class distributions. Besides, they often yield less distinguishable nodes that cannot represent their original classes well, because they may incorporate useless information from other classes to form node representations. To address this issue, we propose a Class Distribution-aware Conditional Generative Adversarial Network (CDCGAN) to generate diverse and distinguishable minority nodes based on their class distribution characteristics. Specifically, we extract the node embeddings and class distributions while preserving the topology and attribute information, thus capturing the overall class characteristics. Then, the obtained class distributions are used to design a conditional generator, which incorporates nonlinear transformations to generate diverse minority nodes and leverages adversarial learning to maintain intrinsic class distribution characteristics. At last, to ensure the distinguishability of node representations, a unique discriminator is implemented to jointly discriminate and classify nodes of the augmented graph. Extensive experiments conducted on six datasets demonstrate that the proposed CDCGAN outperforms the state-of-the-art methods on widely used evaluation metrics. The source code is available at https://github.com/Crystal-LiuBojia/CDCGAN.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106933"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CDCGAN: Class Distribution-aware Conditional GAN-based minority augmentation for imbalanced node classification.\",\"authors\":\"Bojia Liu, Conghui Zheng, Fuhui Sun, Xiaoyan Wang, Li Pan\",\"doi\":\"10.1016/j.neunet.2024.106933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Node classification is a fundamental task of Graph Neural Networks (GNNs). However, GNN models tend to suffer from the class imbalance problem which deteriorates the representation ability of minority classes, thus leading to unappealing classification performance. The most straightforward and effective solution is to augment the minority samples for balancing the representations of majority and minority classes. Previous methods leverage a limited number of labeled nodes to generate new samples, without considering the overall class characteristics and failing to reflect the underlying class distributions. Besides, they often yield less distinguishable nodes that cannot represent their original classes well, because they may incorporate useless information from other classes to form node representations. To address this issue, we propose a Class Distribution-aware Conditional Generative Adversarial Network (CDCGAN) to generate diverse and distinguishable minority nodes based on their class distribution characteristics. Specifically, we extract the node embeddings and class distributions while preserving the topology and attribute information, thus capturing the overall class characteristics. Then, the obtained class distributions are used to design a conditional generator, which incorporates nonlinear transformations to generate diverse minority nodes and leverages adversarial learning to maintain intrinsic class distribution characteristics. At last, to ensure the distinguishability of node representations, a unique discriminator is implemented to jointly discriminate and classify nodes of the augmented graph. Extensive experiments conducted on six datasets demonstrate that the proposed CDCGAN outperforms the state-of-the-art methods on widely used evaluation metrics. The source code is available at https://github.com/Crystal-LiuBojia/CDCGAN.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"183 \",\"pages\":\"106933\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106933\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106933","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
CDCGAN: Class Distribution-aware Conditional GAN-based minority augmentation for imbalanced node classification.
Node classification is a fundamental task of Graph Neural Networks (GNNs). However, GNN models tend to suffer from the class imbalance problem which deteriorates the representation ability of minority classes, thus leading to unappealing classification performance. The most straightforward and effective solution is to augment the minority samples for balancing the representations of majority and minority classes. Previous methods leverage a limited number of labeled nodes to generate new samples, without considering the overall class characteristics and failing to reflect the underlying class distributions. Besides, they often yield less distinguishable nodes that cannot represent their original classes well, because they may incorporate useless information from other classes to form node representations. To address this issue, we propose a Class Distribution-aware Conditional Generative Adversarial Network (CDCGAN) to generate diverse and distinguishable minority nodes based on their class distribution characteristics. Specifically, we extract the node embeddings and class distributions while preserving the topology and attribute information, thus capturing the overall class characteristics. Then, the obtained class distributions are used to design a conditional generator, which incorporates nonlinear transformations to generate diverse minority nodes and leverages adversarial learning to maintain intrinsic class distribution characteristics. At last, to ensure the distinguishability of node representations, a unique discriminator is implemented to jointly discriminate and classify nodes of the augmented graph. Extensive experiments conducted on six datasets demonstrate that the proposed CDCGAN outperforms the state-of-the-art methods on widely used evaluation metrics. The source code is available at https://github.com/Crystal-LiuBojia/CDCGAN.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.