Grant Kinsler, Yuping Li, Gavin Sherlock, Dmitri A Petrov
{"title":"酵母的高分辨率两步进化实验揭示了从多效性到模块化适应的转变。","authors":"Grant Kinsler, Yuping Li, Gavin Sherlock, Dmitri A Petrov","doi":"10.1371/journal.pbio.3002848","DOIUrl":null,"url":null,"abstract":"<p><p>Evolution by natural selection is expected to be a slow and gradual process. In particular, the mutations that drive evolution are predicted to be small and modular, incrementally improving a small number of traits. However, adaptive mutations identified early in microbial evolution experiments, cancer, and other systems often provide substantial fitness gains and pleiotropically improve multiple traits at once. We asked whether such pleiotropically adaptive mutations are common throughout adaptation or are instead a rare feature of early steps in evolution that tend to target key signaling pathways. To do so, we conducted barcoded second-step evolution experiments initiated from 5 first-step mutations identified from a prior yeast evolution experiment. We then isolated hundreds of second-step mutations from these evolution experiments, measured their fitness and performance in several growth phases, and conducted whole genome sequencing of the second-step clones. Here, we found that while the vast majority of mutants isolated from the first-step of evolution in this condition show patterns of pleiotropic adaptation-improving both performance in fermentation and respiration growth phases-second-step mutations show a shift towards modular adaptation, mostly improving respiration performance and only rarely improving fermentation performance. We also identified a shift in the molecular basis of adaptation from genes in cellular signaling pathways towards genes involved in respiration and mitochondrial function. Our results suggest that the genes in cellular signaling pathways may be more likely to provide large, adaptively pleiotropic benefits to the organism due to their ability to coherently affect many phenotypes at once. As such, these genes may serve as the source of pleiotropic adaptation in the early stages of evolution, and once these become exhausted, organisms then adapt more gradually, acquiring smaller, more modular mutations.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 12","pages":"e3002848"},"PeriodicalIF":9.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620474/pdf/","citationCount":"0","resultStr":"{\"title\":\"A high-resolution two-step evolution experiment in yeast reveals a shift from pleiotropic to modular adaptation.\",\"authors\":\"Grant Kinsler, Yuping Li, Gavin Sherlock, Dmitri A Petrov\",\"doi\":\"10.1371/journal.pbio.3002848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evolution by natural selection is expected to be a slow and gradual process. In particular, the mutations that drive evolution are predicted to be small and modular, incrementally improving a small number of traits. However, adaptive mutations identified early in microbial evolution experiments, cancer, and other systems often provide substantial fitness gains and pleiotropically improve multiple traits at once. We asked whether such pleiotropically adaptive mutations are common throughout adaptation or are instead a rare feature of early steps in evolution that tend to target key signaling pathways. To do so, we conducted barcoded second-step evolution experiments initiated from 5 first-step mutations identified from a prior yeast evolution experiment. We then isolated hundreds of second-step mutations from these evolution experiments, measured their fitness and performance in several growth phases, and conducted whole genome sequencing of the second-step clones. Here, we found that while the vast majority of mutants isolated from the first-step of evolution in this condition show patterns of pleiotropic adaptation-improving both performance in fermentation and respiration growth phases-second-step mutations show a shift towards modular adaptation, mostly improving respiration performance and only rarely improving fermentation performance. We also identified a shift in the molecular basis of adaptation from genes in cellular signaling pathways towards genes involved in respiration and mitochondrial function. Our results suggest that the genes in cellular signaling pathways may be more likely to provide large, adaptively pleiotropic benefits to the organism due to their ability to coherently affect many phenotypes at once. As such, these genes may serve as the source of pleiotropic adaptation in the early stages of evolution, and once these become exhausted, organisms then adapt more gradually, acquiring smaller, more modular mutations.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"22 12\",\"pages\":\"e3002848\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002848\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002848","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
A high-resolution two-step evolution experiment in yeast reveals a shift from pleiotropic to modular adaptation.
Evolution by natural selection is expected to be a slow and gradual process. In particular, the mutations that drive evolution are predicted to be small and modular, incrementally improving a small number of traits. However, adaptive mutations identified early in microbial evolution experiments, cancer, and other systems often provide substantial fitness gains and pleiotropically improve multiple traits at once. We asked whether such pleiotropically adaptive mutations are common throughout adaptation or are instead a rare feature of early steps in evolution that tend to target key signaling pathways. To do so, we conducted barcoded second-step evolution experiments initiated from 5 first-step mutations identified from a prior yeast evolution experiment. We then isolated hundreds of second-step mutations from these evolution experiments, measured their fitness and performance in several growth phases, and conducted whole genome sequencing of the second-step clones. Here, we found that while the vast majority of mutants isolated from the first-step of evolution in this condition show patterns of pleiotropic adaptation-improving both performance in fermentation and respiration growth phases-second-step mutations show a shift towards modular adaptation, mostly improving respiration performance and only rarely improving fermentation performance. We also identified a shift in the molecular basis of adaptation from genes in cellular signaling pathways towards genes involved in respiration and mitochondrial function. Our results suggest that the genes in cellular signaling pathways may be more likely to provide large, adaptively pleiotropic benefits to the organism due to their ability to coherently affect many phenotypes at once. As such, these genes may serve as the source of pleiotropic adaptation in the early stages of evolution, and once these become exhausted, organisms then adapt more gradually, acquiring smaller, more modular mutations.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.