Dejan Šorgić , Aleksandra Stefanović , Dušan Keckarević , Mladen Popović
{"title":"XGBoost是一种可靠的机器学习工具,用于使用常染色体STR谱预测祖先-方法证明。","authors":"Dejan Šorgić , Aleksandra Stefanović , Dušan Keckarević , Mladen Popović","doi":"10.1016/j.fsigen.2024.103183","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study was to test the validity of a predictive model of ancestry affiliation based on Short Tandem Repeat (STR) profiles. Frequencies of 29 genetic markers from the Promega website for four distinct population groups (African Americans, Asians, Caucasians, Hispanic Americans) were used to generate 360,000 profiles (90000 profiles per group), which were later used to train and test a range of machine learning algorithms with the goal of establishing the most optimal model for accurate ancestry prediction. The chosen models (Decision Trees, Support Vector Machines, XGBoost, among others) were deployed in Python, and their performance was compared. The XGBoost model outperformed others, displaying significant predictive power with an accuracy rating of 94.24 % for all four classes, and an accuracy rating of 99.06 % on a differentiation task involving Asian, African American, and Caucasian subsamples and an accuracy rating of 98.57 % when differentiating between the African-American, Asian, and the mixed group combining Caucasians and Hispanics. Evaluating the impact of training set size revealed that model accuracy peaked at 94 % with 90,000 profiles per category, but decreased to 83 % as the number of profiles per category was reduced to 500, particularly affecting precision when distinguishing between Caucasian and Hispanic subgroups. The study further investigated the impact of marker quantity on model accuracy, finding that the use of 21 markers, commonly available in commercial amplification kits, resulted in an accuracy of 96.3 % for African Americans, Asians, and Caucasians, and 88.28 % for all four groups combined. These findings underscore the potential of STR-based models in forensic analysis and hint at the broader applicability of machine learning in genetic ancestry determination, with implications for enhancing the precision and reliability of forensic investigations, particularly in heterogeneous environments where ancestral background can be a crucial piece of information.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"76 ","pages":"Article 103183"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XGBoost as a reliable machine learning tool for predicting ancestry using autosomal STR profiles - Proof of method\",\"authors\":\"Dejan Šorgić , Aleksandra Stefanović , Dušan Keckarević , Mladen Popović\",\"doi\":\"10.1016/j.fsigen.2024.103183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this study was to test the validity of a predictive model of ancestry affiliation based on Short Tandem Repeat (STR) profiles. Frequencies of 29 genetic markers from the Promega website for four distinct population groups (African Americans, Asians, Caucasians, Hispanic Americans) were used to generate 360,000 profiles (90000 profiles per group), which were later used to train and test a range of machine learning algorithms with the goal of establishing the most optimal model for accurate ancestry prediction. The chosen models (Decision Trees, Support Vector Machines, XGBoost, among others) were deployed in Python, and their performance was compared. The XGBoost model outperformed others, displaying significant predictive power with an accuracy rating of 94.24 % for all four classes, and an accuracy rating of 99.06 % on a differentiation task involving Asian, African American, and Caucasian subsamples and an accuracy rating of 98.57 % when differentiating between the African-American, Asian, and the mixed group combining Caucasians and Hispanics. Evaluating the impact of training set size revealed that model accuracy peaked at 94 % with 90,000 profiles per category, but decreased to 83 % as the number of profiles per category was reduced to 500, particularly affecting precision when distinguishing between Caucasian and Hispanic subgroups. The study further investigated the impact of marker quantity on model accuracy, finding that the use of 21 markers, commonly available in commercial amplification kits, resulted in an accuracy of 96.3 % for African Americans, Asians, and Caucasians, and 88.28 % for all four groups combined. These findings underscore the potential of STR-based models in forensic analysis and hint at the broader applicability of machine learning in genetic ancestry determination, with implications for enhancing the precision and reliability of forensic investigations, particularly in heterogeneous environments where ancestral background can be a crucial piece of information.</div></div>\",\"PeriodicalId\":50435,\"journal\":{\"name\":\"Forensic Science International-Genetics\",\"volume\":\"76 \",\"pages\":\"Article 103183\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872497324001790\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497324001790","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
XGBoost as a reliable machine learning tool for predicting ancestry using autosomal STR profiles - Proof of method
The aim of this study was to test the validity of a predictive model of ancestry affiliation based on Short Tandem Repeat (STR) profiles. Frequencies of 29 genetic markers from the Promega website for four distinct population groups (African Americans, Asians, Caucasians, Hispanic Americans) were used to generate 360,000 profiles (90000 profiles per group), which were later used to train and test a range of machine learning algorithms with the goal of establishing the most optimal model for accurate ancestry prediction. The chosen models (Decision Trees, Support Vector Machines, XGBoost, among others) were deployed in Python, and their performance was compared. The XGBoost model outperformed others, displaying significant predictive power with an accuracy rating of 94.24 % for all four classes, and an accuracy rating of 99.06 % on a differentiation task involving Asian, African American, and Caucasian subsamples and an accuracy rating of 98.57 % when differentiating between the African-American, Asian, and the mixed group combining Caucasians and Hispanics. Evaluating the impact of training set size revealed that model accuracy peaked at 94 % with 90,000 profiles per category, but decreased to 83 % as the number of profiles per category was reduced to 500, particularly affecting precision when distinguishing between Caucasian and Hispanic subgroups. The study further investigated the impact of marker quantity on model accuracy, finding that the use of 21 markers, commonly available in commercial amplification kits, resulted in an accuracy of 96.3 % for African Americans, Asians, and Caucasians, and 88.28 % for all four groups combined. These findings underscore the potential of STR-based models in forensic analysis and hint at the broader applicability of machine learning in genetic ancestry determination, with implications for enhancing the precision and reliability of forensic investigations, particularly in heterogeneous environments where ancestral background can be a crucial piece of information.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.