Haja Nazeer Ahamed, Ismail Y, Irfan Navabshan, Mohammed Zaidh S, Shanmugarajan Ts, Ilham Jaleel, Thameemul Ansari Lh
{"title":"孔雀石绿和硫酸铜对卤虾的毒性研究:体内和计算研究。","authors":"Haja Nazeer Ahamed, Ismail Y, Irfan Navabshan, Mohammed Zaidh S, Shanmugarajan Ts, Ilham Jaleel, Thameemul Ansari Lh","doi":"10.1016/j.toxrep.2024.101811","DOIUrl":null,"url":null,"abstract":"<p><p>Colour is crucial for enhancing the appetizing value and consumer acceptance of food products. The commonly used food colourants and food preservatives such as Malachite Green (MG) and Copper Sulfate (CS) can cause severe health problems. This study investigates the toxicity of these food-grade colourants through acute exposure using <i>in vivo</i> cytotoxicity using the brine shrimp model including 3D surface analysis (3DSA) and <i>in-silico</i> studies Brine shrimp were treated with various concentrations of MG and CS. The cytotoxic effect was confirmed by brine shrimp lethality assay and 3DSA. Molecular docking and Molecular Dynamic simulation were done using hAChE binding cavity. Results showed that concentrations (2.5-10 µg/ml) of MG and CS significantly decreased locomotor behaviour within 1 h, while higher concentrations (10-100 µg/ml) caused high mortality rates. Morphological studies revealed that there is a significant reduction (p<0.05) in shrimp length treated with MG and CS. The 3DSA indicates that there is an inappropriate surface of the shrimp morphology. Interestingly, MG-treated shrimps had shown significant inhibition of AChE in homogenates, indicating cholinergic nerve-mediated toxicity. Computational studies showed MG confined active binding with human acetylcholinesterase (hAChE), with a binding energy MMGBSA of -51.3 kcal/mol. MD simulation confirmed reversible binding stability inside the hAChE pocket. It can be concluded that acute exposure to brine shrimps with MG and CS exhibited cytotoxicity as evidenced by the increase in mortality of the shrimps. This study further warrants the investigation of MG and CS residues from commonly used fruits and vegetables and their putative toxic effect using <i>in-vivo</i> studies.</p>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"13 ","pages":"101811"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617903/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the toxicity of malachite green and copper sulfate in brine shrimp: <i>In-vivo</i> and computational study.\",\"authors\":\"Haja Nazeer Ahamed, Ismail Y, Irfan Navabshan, Mohammed Zaidh S, Shanmugarajan Ts, Ilham Jaleel, Thameemul Ansari Lh\",\"doi\":\"10.1016/j.toxrep.2024.101811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colour is crucial for enhancing the appetizing value and consumer acceptance of food products. The commonly used food colourants and food preservatives such as Malachite Green (MG) and Copper Sulfate (CS) can cause severe health problems. This study investigates the toxicity of these food-grade colourants through acute exposure using <i>in vivo</i> cytotoxicity using the brine shrimp model including 3D surface analysis (3DSA) and <i>in-silico</i> studies Brine shrimp were treated with various concentrations of MG and CS. The cytotoxic effect was confirmed by brine shrimp lethality assay and 3DSA. Molecular docking and Molecular Dynamic simulation were done using hAChE binding cavity. Results showed that concentrations (2.5-10 µg/ml) of MG and CS significantly decreased locomotor behaviour within 1 h, while higher concentrations (10-100 µg/ml) caused high mortality rates. Morphological studies revealed that there is a significant reduction (p<0.05) in shrimp length treated with MG and CS. The 3DSA indicates that there is an inappropriate surface of the shrimp morphology. Interestingly, MG-treated shrimps had shown significant inhibition of AChE in homogenates, indicating cholinergic nerve-mediated toxicity. Computational studies showed MG confined active binding with human acetylcholinesterase (hAChE), with a binding energy MMGBSA of -51.3 kcal/mol. MD simulation confirmed reversible binding stability inside the hAChE pocket. It can be concluded that acute exposure to brine shrimps with MG and CS exhibited cytotoxicity as evidenced by the increase in mortality of the shrimps. This study further warrants the investigation of MG and CS residues from commonly used fruits and vegetables and their putative toxic effect using <i>in-vivo</i> studies.</p>\",\"PeriodicalId\":23129,\"journal\":{\"name\":\"Toxicology Reports\",\"volume\":\"13 \",\"pages\":\"101811\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617903/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.toxrep.2024.101811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.toxrep.2024.101811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Investigating the toxicity of malachite green and copper sulfate in brine shrimp: In-vivo and computational study.
Colour is crucial for enhancing the appetizing value and consumer acceptance of food products. The commonly used food colourants and food preservatives such as Malachite Green (MG) and Copper Sulfate (CS) can cause severe health problems. This study investigates the toxicity of these food-grade colourants through acute exposure using in vivo cytotoxicity using the brine shrimp model including 3D surface analysis (3DSA) and in-silico studies Brine shrimp were treated with various concentrations of MG and CS. The cytotoxic effect was confirmed by brine shrimp lethality assay and 3DSA. Molecular docking and Molecular Dynamic simulation were done using hAChE binding cavity. Results showed that concentrations (2.5-10 µg/ml) of MG and CS significantly decreased locomotor behaviour within 1 h, while higher concentrations (10-100 µg/ml) caused high mortality rates. Morphological studies revealed that there is a significant reduction (p<0.05) in shrimp length treated with MG and CS. The 3DSA indicates that there is an inappropriate surface of the shrimp morphology. Interestingly, MG-treated shrimps had shown significant inhibition of AChE in homogenates, indicating cholinergic nerve-mediated toxicity. Computational studies showed MG confined active binding with human acetylcholinesterase (hAChE), with a binding energy MMGBSA of -51.3 kcal/mol. MD simulation confirmed reversible binding stability inside the hAChE pocket. It can be concluded that acute exposure to brine shrimps with MG and CS exhibited cytotoxicity as evidenced by the increase in mortality of the shrimps. This study further warrants the investigation of MG and CS residues from commonly used fruits and vegetables and their putative toxic effect using in-vivo studies.