抗糖尿病药物吡格列酮减少果蝇神经元细胞中胰岛淀粉样蛋白聚集过载。

IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Khushboo Sharma, Pooja Rai, Shashank Kumar Maurya, Madhu G Tapadia
{"title":"抗糖尿病药物吡格列酮减少果蝇神经元细胞中胰岛淀粉样蛋白聚集过载。","authors":"Khushboo Sharma, Pooja Rai, Shashank Kumar Maurya, Madhu G Tapadia","doi":"10.1007/s00210-024-03632-4","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid-proteinopathy is observed in type 2 diabetes, where Islet amyloid polypeptide is secreted atypically and impedes cellular homeostasis. The thiazolidinediones family is reported to influence amyloid-beta aggregations. However, research on drug-based stimulation of insulin signaling to alleviate Islet amyloid aggregations is lacking. To understand the impact of pioglitazone on islet amyloid aggregation, we conducted an in vivo and in silico analysis. For in vivo analysis, we generated a transgenic Drosophila harboring the preproform of human Islet amyloid polypeptide (IAPP) that can be ectopically expressed in a spatio-temporal manner. We show that the unprocessed form of IAPP also has the propensity to form aggregates and cause degeneration. Pioglitazone feeding effectively reduces the burden of Islet amyloid aggregations in the larval brain. In silico analysis shows that there is a higher protein-ligand binding energy for IAPP with pioglitazone than amyloid-beta. These results suggests that pioglitazone might be repurposed as a drug to cure islet amyloidogenesis.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-diabetic drug pioglitazone reduces Islet amyloid aggregation overload in the Drosophila neuronal cells.\",\"authors\":\"Khushboo Sharma, Pooja Rai, Shashank Kumar Maurya, Madhu G Tapadia\",\"doi\":\"10.1007/s00210-024-03632-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyloid-proteinopathy is observed in type 2 diabetes, where Islet amyloid polypeptide is secreted atypically and impedes cellular homeostasis. The thiazolidinediones family is reported to influence amyloid-beta aggregations. However, research on drug-based stimulation of insulin signaling to alleviate Islet amyloid aggregations is lacking. To understand the impact of pioglitazone on islet amyloid aggregation, we conducted an in vivo and in silico analysis. For in vivo analysis, we generated a transgenic Drosophila harboring the preproform of human Islet amyloid polypeptide (IAPP) that can be ectopically expressed in a spatio-temporal manner. We show that the unprocessed form of IAPP also has the propensity to form aggregates and cause degeneration. Pioglitazone feeding effectively reduces the burden of Islet amyloid aggregations in the larval brain. In silico analysis shows that there is a higher protein-ligand binding energy for IAPP with pioglitazone than amyloid-beta. These results suggests that pioglitazone might be repurposed as a drug to cure islet amyloidogenesis.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-024-03632-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03632-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在2型糖尿病中观察到淀粉样蛋白病变,其中胰岛淀粉样多肽非典型分泌并阻碍细胞稳态。据报道,噻唑烷二酮家族影响淀粉样蛋白聚集。然而,基于药物刺激胰岛素信号以减轻胰岛淀粉样蛋白聚集的研究尚缺乏。为了了解吡格列酮对胰岛淀粉样蛋白聚集的影响,我们进行了体内和计算机分析。为了进行体内分析,我们培育了一种转基因果蝇,其中含有人类胰岛淀粉样多肽(IAPP)的前体,可以以时空方式异位表达。我们发现未加工的IAPP也有形成聚集体和导致退化的倾向。吡格列酮喂养可有效减轻幼虫脑内胰岛淀粉样蛋白聚集的负担。硅分析表明,IAPP与吡格列酮的蛋白质配体结合能高于淀粉样蛋白- β。这些结果表明吡格列酮可能被重新用作治疗胰岛淀粉样变性的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anti-diabetic drug pioglitazone reduces Islet amyloid aggregation overload in the Drosophila neuronal cells.

Amyloid-proteinopathy is observed in type 2 diabetes, where Islet amyloid polypeptide is secreted atypically and impedes cellular homeostasis. The thiazolidinediones family is reported to influence amyloid-beta aggregations. However, research on drug-based stimulation of insulin signaling to alleviate Islet amyloid aggregations is lacking. To understand the impact of pioglitazone on islet amyloid aggregation, we conducted an in vivo and in silico analysis. For in vivo analysis, we generated a transgenic Drosophila harboring the preproform of human Islet amyloid polypeptide (IAPP) that can be ectopically expressed in a spatio-temporal manner. We show that the unprocessed form of IAPP also has the propensity to form aggregates and cause degeneration. Pioglitazone feeding effectively reduces the burden of Islet amyloid aggregations in the larval brain. In silico analysis shows that there is a higher protein-ligand binding energy for IAPP with pioglitazone than amyloid-beta. These results suggests that pioglitazone might be repurposed as a drug to cure islet amyloidogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
5.60%
发文量
142
审稿时长
4-8 weeks
期刊介绍: Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信