musicarltransnet:一个多模态智能体互动音乐教育系统,通过强化学习驱动。

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2024-11-21 eCollection Date: 2024-01-01 DOI:10.3389/fnbot.2024.1479694
Jie Chang, Zhenmeng Wang, Chao Yan
{"title":"musicarltransnet:一个多模态智能体互动音乐教育系统,通过强化学习驱动。","authors":"Jie Chang, Zhenmeng Wang, Chao Yan","doi":"10.3389/fnbot.2024.1479694","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In recent years, with the rapid development of artificial intelligence technology, the field of music education has begun to explore new teaching models. Traditional music education research methods have primarily focused on single-modal studies such as note recognition and instrument performance techniques, often overlooking the importance of multimodal data integration and interactive teaching. Existing methods often struggle with handling multimodal data effectively, unable to fully utilize visual, auditory, and textual information for comprehensive analysis, which limits the effectiveness of teaching.</p><p><strong>Methods: </strong>To address these challenges, this project introduces MusicARLtrans Net, a multimodal interactive music education agent system driven by reinforcement learning. The system integrates Speech-to-Text (STT) technology to achieve accurate transcription of user voice commands, utilizes the ALBEF (Align Before Fuse) model for aligning and integrating multimodal data, and applies reinforcement learning to optimize teaching strategies.</p><p><strong>Results and discussion: </strong>This approach provides a personalized and real-time feedback interactive learning experience by effectively combining auditory, visual, and textual information. The system collects and annotates multimodal data related to music education, trains and integrates various modules, and ultimately delivers an efficient and intelligent music education agent. Experimental results demonstrate that MusicARLtrans Net significantly outperforms traditional methods, achieving an accuracy of <b>96.77%</b> on the LibriSpeech dataset and <b>97.55%</b> on the MS COCO dataset, with marked improvements in recall, F1 score, and AUC metrics. These results highlight the system's superiority in speech recognition accuracy, multimodal data understanding, and teaching strategy optimization, which together lead to enhanced learning outcomes and user satisfaction. The findings hold substantial academic and practical significance, demonstrating the potential of advanced AI-driven systems in revolutionizing music education.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1479694"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617572/pdf/","citationCount":"0","resultStr":"{\"title\":\"MusicARLtrans Net: a multimodal agent interactive music education system driven via reinforcement learning.\",\"authors\":\"Jie Chang, Zhenmeng Wang, Chao Yan\",\"doi\":\"10.3389/fnbot.2024.1479694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>In recent years, with the rapid development of artificial intelligence technology, the field of music education has begun to explore new teaching models. Traditional music education research methods have primarily focused on single-modal studies such as note recognition and instrument performance techniques, often overlooking the importance of multimodal data integration and interactive teaching. Existing methods often struggle with handling multimodal data effectively, unable to fully utilize visual, auditory, and textual information for comprehensive analysis, which limits the effectiveness of teaching.</p><p><strong>Methods: </strong>To address these challenges, this project introduces MusicARLtrans Net, a multimodal interactive music education agent system driven by reinforcement learning. The system integrates Speech-to-Text (STT) technology to achieve accurate transcription of user voice commands, utilizes the ALBEF (Align Before Fuse) model for aligning and integrating multimodal data, and applies reinforcement learning to optimize teaching strategies.</p><p><strong>Results and discussion: </strong>This approach provides a personalized and real-time feedback interactive learning experience by effectively combining auditory, visual, and textual information. The system collects and annotates multimodal data related to music education, trains and integrates various modules, and ultimately delivers an efficient and intelligent music education agent. Experimental results demonstrate that MusicARLtrans Net significantly outperforms traditional methods, achieving an accuracy of <b>96.77%</b> on the LibriSpeech dataset and <b>97.55%</b> on the MS COCO dataset, with marked improvements in recall, F1 score, and AUC metrics. These results highlight the system's superiority in speech recognition accuracy, multimodal data understanding, and teaching strategy optimization, which together lead to enhanced learning outcomes and user satisfaction. The findings hold substantial academic and practical significance, demonstrating the potential of advanced AI-driven systems in revolutionizing music education.</p>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"18 \",\"pages\":\"1479694\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2024.1479694\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1479694","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

导读:近年来,随着人工智能技术的飞速发展,音乐教育领域开始探索新的教学模式。传统的音乐教育研究方法主要集中在音符识别、乐器演奏技巧等单模态研究上,往往忽视了多模态数据整合和互动教学的重要性。现有的方法往往难以有效地处理多模态数据,无法充分利用视觉、听觉和文本信息进行综合分析,这限制了教学的有效性。方法:为了解决这些挑战,本项目引入了MusicARLtrans Net,这是一个由强化学习驱动的多模态交互式音乐教育代理系统。该系统集成了语音到文本(STT)技术,实现用户语音命令的准确转录,利用ALBEF (Align Before Fuse)模型对多模态数据进行对齐和集成,并应用强化学习优化教学策略。结果与讨论:该方法通过有效地结合听觉、视觉和文本信息,提供个性化和实时反馈的交互式学习体验。系统对音乐教育相关的多模态数据进行采集和标注,对各个模块进行训练和整合,最终提供一个高效、智能的音乐教育代理。实验结果表明,MusicARLtrans Net显著优于传统方法,在librisspeech数据集上达到96.77%的准确率,在MS COCO数据集上达到97.55%的准确率,在召回率、F1分数和AUC指标上有显著提高。这些结果突出了系统在语音识别准确性、多模态数据理解和教学策略优化方面的优势,这些优势共同提高了学习效果和用户满意度。这一发现具有重大的学术和现实意义,展示了先进的人工智能驱动系统在彻底改变音乐教育方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MusicARLtrans Net: a multimodal agent interactive music education system driven via reinforcement learning.

Introduction: In recent years, with the rapid development of artificial intelligence technology, the field of music education has begun to explore new teaching models. Traditional music education research methods have primarily focused on single-modal studies such as note recognition and instrument performance techniques, often overlooking the importance of multimodal data integration and interactive teaching. Existing methods often struggle with handling multimodal data effectively, unable to fully utilize visual, auditory, and textual information for comprehensive analysis, which limits the effectiveness of teaching.

Methods: To address these challenges, this project introduces MusicARLtrans Net, a multimodal interactive music education agent system driven by reinforcement learning. The system integrates Speech-to-Text (STT) technology to achieve accurate transcription of user voice commands, utilizes the ALBEF (Align Before Fuse) model for aligning and integrating multimodal data, and applies reinforcement learning to optimize teaching strategies.

Results and discussion: This approach provides a personalized and real-time feedback interactive learning experience by effectively combining auditory, visual, and textual information. The system collects and annotates multimodal data related to music education, trains and integrates various modules, and ultimately delivers an efficient and intelligent music education agent. Experimental results demonstrate that MusicARLtrans Net significantly outperforms traditional methods, achieving an accuracy of 96.77% on the LibriSpeech dataset and 97.55% on the MS COCO dataset, with marked improvements in recall, F1 score, and AUC metrics. These results highlight the system's superiority in speech recognition accuracy, multimodal data understanding, and teaching strategy optimization, which together lead to enhanced learning outcomes and user satisfaction. The findings hold substantial academic and practical significance, demonstrating the potential of advanced AI-driven systems in revolutionizing music education.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信