{"title":"靶向巨噬细胞的肿瘤免疫治疗研究进展。","authors":"Binrui Shi, Meng Du, Zhiyi Chen","doi":"10.1080/1744666X.2024.2438721","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In recent years, immunotherapy has shown significant therapeutic potential in patients with advanced tumors. However, only a small number of individuals benefit, mainly due to the tumor microenvironment (TME), which provides conditions for the development of tumors. Macrophages in TME, known as tumor-associated macrophages (TAM), are mainly divided into M1 anti-tumor and M2 pro-tumor phenotypes, which play a regulatory role in various stages of tumorigenesis, promote tumorigenesis and metastasis, and cause immunotherapy resistance.</p><p><strong>Areas covered: </strong>This review focuses on research strategies and preclinical/clinical research progress in translating TAM into antitumor phenotype by referring to the PubMed database for five years. These include small molecule chemotherapy drug development, metabolic regulation, gene editing, physical stimulation, nanotechnology-mediated combination therapy strategies, and chimeric antigen receptor-based immunotherapy.</p><p><strong>Expert opinion: </strong>It is necessary to explore the surface-specific receptors and cell signaling pathways of TAM further to improve the specificity and targeting of drugs and to strengthen research in the field of probes that can monitor changes in TAM in real time. In addition, the physical stimulation polarization strategy has the advantages of being noninvasive, economical, and stable and will have excellent clinical transformation value in the future.</p>","PeriodicalId":12175,"journal":{"name":"Expert Review of Clinical Immunology","volume":" ","pages":"1-18"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in tumor immunotherapy targeting macrophages.\",\"authors\":\"Binrui Shi, Meng Du, Zhiyi Chen\",\"doi\":\"10.1080/1744666X.2024.2438721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>In recent years, immunotherapy has shown significant therapeutic potential in patients with advanced tumors. However, only a small number of individuals benefit, mainly due to the tumor microenvironment (TME), which provides conditions for the development of tumors. Macrophages in TME, known as tumor-associated macrophages (TAM), are mainly divided into M1 anti-tumor and M2 pro-tumor phenotypes, which play a regulatory role in various stages of tumorigenesis, promote tumorigenesis and metastasis, and cause immunotherapy resistance.</p><p><strong>Areas covered: </strong>This review focuses on research strategies and preclinical/clinical research progress in translating TAM into antitumor phenotype by referring to the PubMed database for five years. These include small molecule chemotherapy drug development, metabolic regulation, gene editing, physical stimulation, nanotechnology-mediated combination therapy strategies, and chimeric antigen receptor-based immunotherapy.</p><p><strong>Expert opinion: </strong>It is necessary to explore the surface-specific receptors and cell signaling pathways of TAM further to improve the specificity and targeting of drugs and to strengthen research in the field of probes that can monitor changes in TAM in real time. In addition, the physical stimulation polarization strategy has the advantages of being noninvasive, economical, and stable and will have excellent clinical transformation value in the future.</p>\",\"PeriodicalId\":12175,\"journal\":{\"name\":\"Expert Review of Clinical Immunology\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Clinical Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1744666X.2024.2438721\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Clinical Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1744666X.2024.2438721","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Advances in tumor immunotherapy targeting macrophages.
Introduction: In recent years, immunotherapy has shown significant therapeutic potential in patients with advanced tumors. However, only a small number of individuals benefit, mainly due to the tumor microenvironment (TME), which provides conditions for the development of tumors. Macrophages in TME, known as tumor-associated macrophages (TAM), are mainly divided into M1 anti-tumor and M2 pro-tumor phenotypes, which play a regulatory role in various stages of tumorigenesis, promote tumorigenesis and metastasis, and cause immunotherapy resistance.
Areas covered: This review focuses on research strategies and preclinical/clinical research progress in translating TAM into antitumor phenotype by referring to the PubMed database for five years. These include small molecule chemotherapy drug development, metabolic regulation, gene editing, physical stimulation, nanotechnology-mediated combination therapy strategies, and chimeric antigen receptor-based immunotherapy.
Expert opinion: It is necessary to explore the surface-specific receptors and cell signaling pathways of TAM further to improve the specificity and targeting of drugs and to strengthen research in the field of probes that can monitor changes in TAM in real time. In addition, the physical stimulation polarization strategy has the advantages of being noninvasive, economical, and stable and will have excellent clinical transformation value in the future.
期刊介绍:
Expert Review of Clinical Immunology (ISSN 1744-666X) provides expert analysis and commentary regarding the performance of new therapeutic and diagnostic modalities in clinical immunology. Members of the International Editorial Advisory Panel of Expert Review of Clinical Immunology are the forefront of their area of expertise. This panel works with our dedicated editorial team to identify the most important and topical review themes and the corresponding expert(s) most appropriate to provide commentary and analysis. All articles are subject to rigorous peer-review, and the finished reviews provide an essential contribution to decision-making in clinical immunology.
Articles focus on the following key areas:
• Therapeutic overviews of specific immunologic disorders highlighting optimal therapy and prospects for new medicines
• Performance and benefits of newly approved therapeutic agents
• New diagnostic approaches
• Screening and patient stratification
• Pharmacoeconomic studies
• New therapeutic indications for existing therapies
• Adverse effects, occurrence and reduction
• Prospects for medicines in late-stage trials approaching regulatory approval
• Novel treatment strategies
• Epidemiological studies
• Commentary and comparison of treatment guidelines
Topics include infection and immunity, inflammation, host defense mechanisms, congenital and acquired immunodeficiencies, anaphylaxis and allergy, systemic immune diseases, organ-specific inflammatory diseases, transplantation immunology, endocrinology and diabetes, cancer immunology, neuroimmunology and hematological diseases.