Jing Zhao, Xueyue Wang, Jing Wang, Yating You, Qi Wang, Yuan Xu, Ye Fan
{"title":"肺腺癌肿瘤免疫微环境中丁酸代谢相关基因标记:一项综合生物信息学研究。","authors":"Jing Zhao, Xueyue Wang, Jing Wang, Yating You, Qi Wang, Yuan Xu, Ye Fan","doi":"10.1002/iid3.70087","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Experimental results have verified the suppressive impact of butyrate on tumor formation. Nevertheless, there is a limited understanding of the hidden function of butyrate metabolism within the tumor immune microenvironment (TIME) of lung adenocarcinoma (LUAD). This research aimed at digging the association between genes related to butyrate metabolism (butyrate metabolism-related genes [BMRGs) and immune infiltrates in LUAD patients.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Through analyzing The Cancer Genome Atlas dataset (TCGA), the identification of 38 differentially expressed BMRGs was made between LUAD and normal samples. Later, a prognostic signature made up of nine BMRGs was made to evaluate the risk score of LUAD subjects. Notably, high-risk scores emerged as negative prognostic indicators for overall survival in LUAD subjects. Additionally, BMRGs displayed associations with immunocyte infiltration levels, immune pathway activities, and pivotal prognostic hub BMRGs.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>One key prognostic BMRG, PTGDS, exhibited a robust correlation with T cells, the chemokine-related pathway, and the TCR signaling pathway. This study suggests that investigating the interplay between butyrate metabolism and T cells could present a promising novel approach to cancer treatment. OncoPredict analysis further unveiled distinct sensitivities of nine medicine in high- and low-risk groups, facilitating the selection of optimal treatment strategies for individual LUAD patients.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The study establishes that the BMRG signature serves as a sensitive predictive biomarker, providing profound insights into the crucial effect of butyrate metabolism in the context of LUAD TIME.</p>\n </section>\n </div>","PeriodicalId":13289,"journal":{"name":"Immunity, Inflammation and Disease","volume":"12 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621860/pdf/","citationCount":"0","resultStr":"{\"title\":\"Butyrate Metabolism-Related Gene Signature in Tumor Immune Microenvironment in Lung Adenocarcinoma: A Comprehensive Bioinformatics Study\",\"authors\":\"Jing Zhao, Xueyue Wang, Jing Wang, Yating You, Qi Wang, Yuan Xu, Ye Fan\",\"doi\":\"10.1002/iid3.70087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Experimental results have verified the suppressive impact of butyrate on tumor formation. Nevertheless, there is a limited understanding of the hidden function of butyrate metabolism within the tumor immune microenvironment (TIME) of lung adenocarcinoma (LUAD). This research aimed at digging the association between genes related to butyrate metabolism (butyrate metabolism-related genes [BMRGs) and immune infiltrates in LUAD patients.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Through analyzing The Cancer Genome Atlas dataset (TCGA), the identification of 38 differentially expressed BMRGs was made between LUAD and normal samples. Later, a prognostic signature made up of nine BMRGs was made to evaluate the risk score of LUAD subjects. Notably, high-risk scores emerged as negative prognostic indicators for overall survival in LUAD subjects. Additionally, BMRGs displayed associations with immunocyte infiltration levels, immune pathway activities, and pivotal prognostic hub BMRGs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>One key prognostic BMRG, PTGDS, exhibited a robust correlation with T cells, the chemokine-related pathway, and the TCR signaling pathway. This study suggests that investigating the interplay between butyrate metabolism and T cells could present a promising novel approach to cancer treatment. OncoPredict analysis further unveiled distinct sensitivities of nine medicine in high- and low-risk groups, facilitating the selection of optimal treatment strategies for individual LUAD patients.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The study establishes that the BMRG signature serves as a sensitive predictive biomarker, providing profound insights into the crucial effect of butyrate metabolism in the context of LUAD TIME.</p>\\n </section>\\n </div>\",\"PeriodicalId\":13289,\"journal\":{\"name\":\"Immunity, Inflammation and Disease\",\"volume\":\"12 12\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621860/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunity, Inflammation and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/iid3.70087\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity, Inflammation and Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iid3.70087","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Butyrate Metabolism-Related Gene Signature in Tumor Immune Microenvironment in Lung Adenocarcinoma: A Comprehensive Bioinformatics Study
Background
Experimental results have verified the suppressive impact of butyrate on tumor formation. Nevertheless, there is a limited understanding of the hidden function of butyrate metabolism within the tumor immune microenvironment (TIME) of lung adenocarcinoma (LUAD). This research aimed at digging the association between genes related to butyrate metabolism (butyrate metabolism-related genes [BMRGs) and immune infiltrates in LUAD patients.
Methods
Through analyzing The Cancer Genome Atlas dataset (TCGA), the identification of 38 differentially expressed BMRGs was made between LUAD and normal samples. Later, a prognostic signature made up of nine BMRGs was made to evaluate the risk score of LUAD subjects. Notably, high-risk scores emerged as negative prognostic indicators for overall survival in LUAD subjects. Additionally, BMRGs displayed associations with immunocyte infiltration levels, immune pathway activities, and pivotal prognostic hub BMRGs.
Results
One key prognostic BMRG, PTGDS, exhibited a robust correlation with T cells, the chemokine-related pathway, and the TCR signaling pathway. This study suggests that investigating the interplay between butyrate metabolism and T cells could present a promising novel approach to cancer treatment. OncoPredict analysis further unveiled distinct sensitivities of nine medicine in high- and low-risk groups, facilitating the selection of optimal treatment strategies for individual LUAD patients.
Conclusions
The study establishes that the BMRG signature serves as a sensitive predictive biomarker, providing profound insights into the crucial effect of butyrate metabolism in the context of LUAD TIME.
期刊介绍:
Immunity, Inflammation and Disease is a peer-reviewed, open access, interdisciplinary journal providing rapid publication of research across the broad field of immunology. Immunity, Inflammation and Disease gives rapid consideration to papers in all areas of clinical and basic research. The journal is indexed in Medline and the Science Citation Index Expanded (part of Web of Science), among others. It welcomes original work that enhances the understanding of immunology in areas including:
• cellular and molecular immunology
• clinical immunology
• allergy
• immunochemistry
• immunogenetics
• immune signalling
• immune development
• imaging
• mathematical modelling
• autoimmunity
• transplantation immunology
• cancer immunology