人体分解建模:贝叶斯方法。

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL
D. Hudson Smith , Noah Nisbet , Carl Ehrett , Cristina I. Tica , Madeline M. Atwell , Katherine E. Weisensee
{"title":"人体分解建模:贝叶斯方法。","authors":"D. Hudson Smith ,&nbsp;Noah Nisbet ,&nbsp;Carl Ehrett ,&nbsp;Cristina I. Tica ,&nbsp;Madeline M. Atwell ,&nbsp;Katherine E. Weisensee","doi":"10.1016/j.forsciint.2024.112309","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental and individualistic variables affect the rate of human decomposition in complex ways. These effects complicate the estimation of the postmortem interval (PMI) based on observed decomposition characteristics. In this work, we develop a generative probabilistic model for decomposing human remains based on PMI and a wide range of environmental and individualistic variables. This model explicitly represents the effect of each variable, including PMI, on the appearance of each decomposition characteristic, allowing for direct interpretation of model effects and enabling the use of the model for PMI inference and optimal experimental design. In addition, the probabilistic nature of the model allows for the integration of expert knowledge in the form of prior distributions. We fit this model to a diverse set of 2529 cases from the GeoFOR dataset. We demonstrate that the model accurately predicts 24 decomposition characteristics with an ROC AUC score of 0.85. Using Bayesian inference techniques, we invert the decomposition model to predict PMI as a function of the observed decomposition characteristics and environmental and individualistic variables, producing an R-squared measure of 71 %. Finally, we demonstrate how to use the fitted model to design future experiments that maximize the expected amount of new information about the mechanisms of decomposition using the Expected Information Gain formalism.</div></div>","PeriodicalId":12341,"journal":{"name":"Forensic science international","volume":"367 ","pages":"Article 112309"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling human decomposition: A Bayesian approach\",\"authors\":\"D. Hudson Smith ,&nbsp;Noah Nisbet ,&nbsp;Carl Ehrett ,&nbsp;Cristina I. Tica ,&nbsp;Madeline M. Atwell ,&nbsp;Katherine E. Weisensee\",\"doi\":\"10.1016/j.forsciint.2024.112309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Environmental and individualistic variables affect the rate of human decomposition in complex ways. These effects complicate the estimation of the postmortem interval (PMI) based on observed decomposition characteristics. In this work, we develop a generative probabilistic model for decomposing human remains based on PMI and a wide range of environmental and individualistic variables. This model explicitly represents the effect of each variable, including PMI, on the appearance of each decomposition characteristic, allowing for direct interpretation of model effects and enabling the use of the model for PMI inference and optimal experimental design. In addition, the probabilistic nature of the model allows for the integration of expert knowledge in the form of prior distributions. We fit this model to a diverse set of 2529 cases from the GeoFOR dataset. We demonstrate that the model accurately predicts 24 decomposition characteristics with an ROC AUC score of 0.85. Using Bayesian inference techniques, we invert the decomposition model to predict PMI as a function of the observed decomposition characteristics and environmental and individualistic variables, producing an R-squared measure of 71 %. Finally, we demonstrate how to use the fitted model to design future experiments that maximize the expected amount of new information about the mechanisms of decomposition using the Expected Information Gain formalism.</div></div>\",\"PeriodicalId\":12341,\"journal\":{\"name\":\"Forensic science international\",\"volume\":\"367 \",\"pages\":\"Article 112309\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic science international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379073824003918\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic science international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379073824003918","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

摘要

环境和个人变量以复杂的方式影响人类分解的速度。这些影响使基于观察到的分解特征的死后间隔(PMI)的估计复杂化。在这项工作中,我们开发了一个基于PMI和广泛的环境和个人变量的分解人类遗骸的生成概率模型。该模型明确表示了包括PMI在内的每个变量对每个分解特征外观的影响,允许直接解释模型效应,并使模型能够用于PMI推断和最优实验设计。此外,该模型的概率性质允许以先验分布的形式集成专家知识。我们将该模型拟合到来自GeoFOR数据集的2529个不同案例中。我们证明该模型准确地预测了24个分解特征,ROC AUC得分为0.85。使用贝叶斯推理技术,我们将分解模型倒置,以预测PMI作为观察到的分解特征和环境和个人变量的函数,产生的r平方度量为71 %。最后,我们演示了如何使用拟合模型来设计未来的实验,以最大限度地利用预期信息增益形式来获得有关分解机制的新信息的预期数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling human decomposition: A Bayesian approach
Environmental and individualistic variables affect the rate of human decomposition in complex ways. These effects complicate the estimation of the postmortem interval (PMI) based on observed decomposition characteristics. In this work, we develop a generative probabilistic model for decomposing human remains based on PMI and a wide range of environmental and individualistic variables. This model explicitly represents the effect of each variable, including PMI, on the appearance of each decomposition characteristic, allowing for direct interpretation of model effects and enabling the use of the model for PMI inference and optimal experimental design. In addition, the probabilistic nature of the model allows for the integration of expert knowledge in the form of prior distributions. We fit this model to a diverse set of 2529 cases from the GeoFOR dataset. We demonstrate that the model accurately predicts 24 decomposition characteristics with an ROC AUC score of 0.85. Using Bayesian inference techniques, we invert the decomposition model to predict PMI as a function of the observed decomposition characteristics and environmental and individualistic variables, producing an R-squared measure of 71 %. Finally, we demonstrate how to use the fitted model to design future experiments that maximize the expected amount of new information about the mechanisms of decomposition using the Expected Information Gain formalism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forensic science international
Forensic science international 医学-医学:法
CiteScore
5.00
自引率
9.10%
发文量
285
审稿时长
49 days
期刊介绍: Forensic Science International is the flagship journal in the prestigious Forensic Science International family, publishing the most innovative, cutting-edge, and influential contributions across the forensic sciences. Fields include: forensic pathology and histochemistry, chemistry, biochemistry and toxicology, biology, serology, odontology, psychiatry, anthropology, digital forensics, the physical sciences, firearms, and document examination, as well as investigations of value to public health in its broadest sense, and the important marginal area where science and medicine interact with the law. The journal publishes: Case Reports Commentaries Letters to the Editor Original Research Papers (Regular Papers) Rapid Communications Review Articles Technical Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信