生物碱与毒蛙微生物多样性和代谢功能的增加有关。

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-01-06 Epub Date: 2024-12-04 DOI:10.1016/j.cub.2024.10.069
Stephanie N Caty, Aurora Alvarez-Buylla, Cooper Vasek, Elicio E Tapia, Nora A Martin, Theresa McLaughlin, Chloe L Golde, Peter K Weber, Xavier Mayali, Luis A Coloma, Megan M Morris, Lauren A O'Connell
{"title":"生物碱与毒蛙微生物多样性和代谢功能的增加有关。","authors":"Stephanie N Caty, Aurora Alvarez-Buylla, Cooper Vasek, Elicio E Tapia, Nora A Martin, Theresa McLaughlin, Chloe L Golde, Peter K Weber, Xavier Mayali, Luis A Coloma, Megan M Morris, Lauren A O'Connell","doi":"10.1016/j.cub.2024.10.069","DOIUrl":null,"url":null,"abstract":"<p><p>Shifts in host-associated microbiomes can impact both host and microbes.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup><sup>,</sup><sup>6</sup> It is of interest to understand how perturbations, like the introduction of exogenous chemicals,<sup>7</sup><sup>,</sup><sup>8</sup><sup>,</sup><sup>9</sup><sup>,</sup><sup>10</sup><sup>,</sup><sup>11</sup><sup>,</sup><sup>12</sup><sup>,</sup><sup>13</sup> impact microbiomes. In poison frogs (family Dendrobatidae), the skin microbiome is exposed to alkaloids that the frogs sequester for defense.<sup>14</sup><sup>,</sup><sup>15</sup><sup>,</sup><sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup><sup>,</sup><sup>19</sup> These alkaloids are antimicrobial<sup>20</sup><sup>,</sup><sup>21</sup><sup>,</sup><sup>22</sup>; however, their effect on the frogs' skin microbiome is unknown. To test this, we characterized microbial communities from field-collected dendrobatid frogs. Then, we conducted a laboratory experiment to monitor the effect of the alkaloid decahydroquinoline (DHQ) on the microbiome of two frog species with contrasting alkaloid loads in nature. In both datasets, we found that alkaloid-exposed microbiomes were more phylogenetically diverse, with an increase in diversity among rare taxa. To better understand the isolate-specific response to alkaloids, we cultured microbial isolates from poison frog skin and found that many isolates exhibited enhanced growth or were not impacted by the addition of DHQ. To further explore the microbial response to alkaloids, we sequenced the metagenomes from high- and low-alkaloid frogs and observed a greater diversity of genes associated with nitrogen and carbon metabolism in high-alkaloid frogs. From these data, we hypothesized that some strains may metabolize the alkaloids. We used stable isotope tracing coupled to nanoSIMS (nanoscale secondary ion mass spectrometry), which supported the idea that some of these isolates are able to metabolize DHQ. Together, these data suggest that poison frog alkaloids open new niches for skin-associated microbes with specific adaptations, such as alkaloid metabolism, that enable survival in this environment.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"187-197.e8"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alkaloids are associated with increased microbial diversity and metabolic function in poison frogs.\",\"authors\":\"Stephanie N Caty, Aurora Alvarez-Buylla, Cooper Vasek, Elicio E Tapia, Nora A Martin, Theresa McLaughlin, Chloe L Golde, Peter K Weber, Xavier Mayali, Luis A Coloma, Megan M Morris, Lauren A O'Connell\",\"doi\":\"10.1016/j.cub.2024.10.069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shifts in host-associated microbiomes can impact both host and microbes.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup><sup>,</sup><sup>6</sup> It is of interest to understand how perturbations, like the introduction of exogenous chemicals,<sup>7</sup><sup>,</sup><sup>8</sup><sup>,</sup><sup>9</sup><sup>,</sup><sup>10</sup><sup>,</sup><sup>11</sup><sup>,</sup><sup>12</sup><sup>,</sup><sup>13</sup> impact microbiomes. In poison frogs (family Dendrobatidae), the skin microbiome is exposed to alkaloids that the frogs sequester for defense.<sup>14</sup><sup>,</sup><sup>15</sup><sup>,</sup><sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup><sup>,</sup><sup>19</sup> These alkaloids are antimicrobial<sup>20</sup><sup>,</sup><sup>21</sup><sup>,</sup><sup>22</sup>; however, their effect on the frogs' skin microbiome is unknown. To test this, we characterized microbial communities from field-collected dendrobatid frogs. Then, we conducted a laboratory experiment to monitor the effect of the alkaloid decahydroquinoline (DHQ) on the microbiome of two frog species with contrasting alkaloid loads in nature. In both datasets, we found that alkaloid-exposed microbiomes were more phylogenetically diverse, with an increase in diversity among rare taxa. To better understand the isolate-specific response to alkaloids, we cultured microbial isolates from poison frog skin and found that many isolates exhibited enhanced growth or were not impacted by the addition of DHQ. To further explore the microbial response to alkaloids, we sequenced the metagenomes from high- and low-alkaloid frogs and observed a greater diversity of genes associated with nitrogen and carbon metabolism in high-alkaloid frogs. From these data, we hypothesized that some strains may metabolize the alkaloids. We used stable isotope tracing coupled to nanoSIMS (nanoscale secondary ion mass spectrometry), which supported the idea that some of these isolates are able to metabolize DHQ. Together, these data suggest that poison frog alkaloids open new niches for skin-associated microbes with specific adaptations, such as alkaloid metabolism, that enable survival in this environment.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"187-197.e8\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2024.10.069\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.10.069","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

宿主相关微生物组的变化会影响宿主和微生物。1、2、3、4、5、6了解扰动(如引入外源化学物质7、8、9、10、11、12、13)如何影响微生物群是有意义的。在毒蛙(石蛙科)中,皮肤微生物群暴露于生物碱中,蛙类为了防御而隔离生物碱。14,15,16,17,18,19这些生物碱具有抗菌作用20,21,22;然而,它们对青蛙皮肤微生物群的影响尚不清楚。为了验证这一点,我们对野外采集的石斛蛙的微生物群落进行了表征。在此基础上,通过室内实验监测生物碱十氢喹啉(DHQ)对两种不同生物碱负荷青蛙微生物组的影响。在这两个数据集中,我们发现生物碱暴露的微生物组具有更多的系统发育多样性,在稀有分类群中多样性增加。为了更好地了解分离物对生物碱的特异性反应,我们从毒蛙皮肤中培养了微生物分离物,发现许多分离物表现出生长增强或不受添加DHQ的影响。为了进一步探索微生物对生物碱的反应,我们对高生物碱和低生物碱青蛙的宏基因组进行了测序,并观察到高生物碱青蛙与氮和碳代谢相关的基因具有更大的多样性。根据这些数据,我们假设一些菌株可能代谢生物碱。我们使用稳定同位素示踪与纳米二级离子质谱法(nanoSIMS)相结合,这支持了一些分离株能够代谢DHQ的观点。总之,这些数据表明,毒蛙的生物碱为具有特定适应性的皮肤相关微生物(如生物碱代谢)开辟了新的生态位,使其能够在这种环境中生存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alkaloids are associated with increased microbial diversity and metabolic function in poison frogs.

Shifts in host-associated microbiomes can impact both host and microbes.1,2,3,4,5,6 It is of interest to understand how perturbations, like the introduction of exogenous chemicals,7,8,9,10,11,12,13 impact microbiomes. In poison frogs (family Dendrobatidae), the skin microbiome is exposed to alkaloids that the frogs sequester for defense.14,15,16,17,18,19 These alkaloids are antimicrobial20,21,22; however, their effect on the frogs' skin microbiome is unknown. To test this, we characterized microbial communities from field-collected dendrobatid frogs. Then, we conducted a laboratory experiment to monitor the effect of the alkaloid decahydroquinoline (DHQ) on the microbiome of two frog species with contrasting alkaloid loads in nature. In both datasets, we found that alkaloid-exposed microbiomes were more phylogenetically diverse, with an increase in diversity among rare taxa. To better understand the isolate-specific response to alkaloids, we cultured microbial isolates from poison frog skin and found that many isolates exhibited enhanced growth or were not impacted by the addition of DHQ. To further explore the microbial response to alkaloids, we sequenced the metagenomes from high- and low-alkaloid frogs and observed a greater diversity of genes associated with nitrogen and carbon metabolism in high-alkaloid frogs. From these data, we hypothesized that some strains may metabolize the alkaloids. We used stable isotope tracing coupled to nanoSIMS (nanoscale secondary ion mass spectrometry), which supported the idea that some of these isolates are able to metabolize DHQ. Together, these data suggest that poison frog alkaloids open new niches for skin-associated microbes with specific adaptations, such as alkaloid metabolism, that enable survival in this environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信