沙鼠耳蜗底部的低侧和多音抑制。

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Biophysical journal Pub Date : 2025-01-21 Epub Date: 2024-12-04 DOI:10.1016/j.bpj.2024.12.004
C Elliott Strimbu, Elizabeth S Olson
{"title":"沙鼠耳蜗底部的低侧和多音抑制。","authors":"C Elliott Strimbu, Elizabeth S Olson","doi":"10.1016/j.bpj.2024.12.004","DOIUrl":null,"url":null,"abstract":"<p><p>The cochlea's mechanical response to sound stimulation is nonlinear, likely due to saturation of the mechanoelectric transduction current that is part of an electromechanical feedback loop. The ability of a second tone or tones to reduce the response to a probe tone is one manifestation of nonlinearity, termed suppression. Using optical coherence tomography to measure motion within the organ of Corti, regional motion variations have been observed. Here, we report on the suppression that occurs within the organ of Corti when a high-sound-level, low-frequency suppressor tone was delivered along with a sweep of discreet single tones. Responses were measured in the base of the gerbil cochlea at two best frequency locations, with two different directions of observation relative to the sensory tissue's anatomical axes. Suppression extended over a wide frequency range in the outer hair cell region, whereas it was typically limited to the best frequency peak in the reticular lamina region and at the basilar membrane. Aspects of the observed suppression were consistent with the effect of a saturating nonlinearity. Recent measurements have noted the three-dimensional nature of organ of Corti motion. The effects of suppression observed here could be due to a combination of reduced motion amplitude and altered vibration axis.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"297-315"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-side and multitone suppression in the base of the gerbil cochlea.\",\"authors\":\"C Elliott Strimbu, Elizabeth S Olson\",\"doi\":\"10.1016/j.bpj.2024.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cochlea's mechanical response to sound stimulation is nonlinear, likely due to saturation of the mechanoelectric transduction current that is part of an electromechanical feedback loop. The ability of a second tone or tones to reduce the response to a probe tone is one manifestation of nonlinearity, termed suppression. Using optical coherence tomography to measure motion within the organ of Corti, regional motion variations have been observed. Here, we report on the suppression that occurs within the organ of Corti when a high-sound-level, low-frequency suppressor tone was delivered along with a sweep of discreet single tones. Responses were measured in the base of the gerbil cochlea at two best frequency locations, with two different directions of observation relative to the sensory tissue's anatomical axes. Suppression extended over a wide frequency range in the outer hair cell region, whereas it was typically limited to the best frequency peak in the reticular lamina region and at the basilar membrane. Aspects of the observed suppression were consistent with the effect of a saturating nonlinearity. Recent measurements have noted the three-dimensional nature of organ of Corti motion. The effects of suppression observed here could be due to a combination of reduced motion amplitude and altered vibration axis.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"297-315\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.12.004\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.12.004","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

耳蜗对声音刺激的机械反应是非线性的,可能是由于机电反馈回路中机电转导电流的饱和。第二个或多个音调降低对探测音调的响应的能力是非线性的一种表现,称为抑制。利用光学相干断层扫描测量Corti器官内的运动,已经观察到区域运动变化。在这里,我们报告了在Corti器官内发生的抑制,当一个高声级,低频抑制音与一个谨慎的单音扫一起传递。在沙鼠耳蜗底部的两个最佳频率位置测量反应,相对于感觉组织的解剖轴有两个不同的观察方向。外毛细胞区域的抑制范围很宽,而通常限于网状层区和基底膜的最佳频率峰值。观察到的抑制方面与饱和非线性的影响是一致的。最近的测量已经注意到科尔蒂运动器官的三维性质。这里观察到的抑制效应可能是由于运动幅度减小和振动轴改变的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-side and multitone suppression in the base of the gerbil cochlea.

The cochlea's mechanical response to sound stimulation is nonlinear, likely due to saturation of the mechanoelectric transduction current that is part of an electromechanical feedback loop. The ability of a second tone or tones to reduce the response to a probe tone is one manifestation of nonlinearity, termed suppression. Using optical coherence tomography to measure motion within the organ of Corti, regional motion variations have been observed. Here, we report on the suppression that occurs within the organ of Corti when a high-sound-level, low-frequency suppressor tone was delivered along with a sweep of discreet single tones. Responses were measured in the base of the gerbil cochlea at two best frequency locations, with two different directions of observation relative to the sensory tissue's anatomical axes. Suppression extended over a wide frequency range in the outer hair cell region, whereas it was typically limited to the best frequency peak in the reticular lamina region and at the basilar membrane. Aspects of the observed suppression were consistent with the effect of a saturating nonlinearity. Recent measurements have noted the three-dimensional nature of organ of Corti motion. The effects of suppression observed here could be due to a combination of reduced motion amplitude and altered vibration axis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信