{"title":"通过对腹泻仔猪和非腹泻仔猪粪便微生物群的比较分析,揭示了与腹泻相关的肠道微生物群的生物标志物。","authors":"Jiang Zhu, Yue Sun, Lingyan Ma, Qu Chen, Caihong Hu, Hua Yang, Qihua Hong, Yingping Xiao","doi":"10.1016/j.aninu.2024.05.013","DOIUrl":null,"url":null,"abstract":"<p><p>Diarrhea poses a significant threat to the health and well-being of weaned piglets, leading to substantial morbidity and mortality and economic loss in the pig industry. However, the structural characteristics of the gut microbiota and the key genera associated with early diarrhea in piglets within large-scale production systems are poorly understood. This study aimed to investigate the differences in the microbial community structure and the specific genera alteration between the healthy piglets and diarrhea piglets, and to identify the biomarkers of gut microbiota associated with diarrhea in piglets. A total of 250 fecal samples, including 130 healthy piglets (Duroc × Landrace × Large Yorkshire) in the Control group and 120 from diarrhea piglets in Diarrhea group, were collected from three large-scale farms as discovery cohorts and were used for 16S rRNA gene sequencing. Additionally, 150 fecal samples from another large-scale pig farm were collected for the validation trail. The Chao1 and ACE indices were obviously lower (<i>P</i> < 0.01) in the diarrhea piglets compared to the healthy ones. Principal coordinate analysis showed significant differences in the distance matrix of gut microbiota between the healthy and diarrhea piglets (Bray-Curtis: <i>P</i> = 0.001, Jaccard: <i>P</i> = 0.001). Eighty-five genera were differentially enriched (<i>P</i> < 0.001) between healthy and diarrhea piglets. Notably, <i>Treponema</i>, <i>Sphaerochaeta</i>, <i>Escherichia-Shigella</i>, <i>Slackia</i>, and <i>Staphylococcus</i> were identified as potential biomarkers of diarrhea susceptibility; <i>Clostridium sensu stricto 1</i>, <i>Prevotella_9</i>, <i>Olsenella</i>, <i>Dorea</i>, and <i>Lachnospiraceae NK4A136 group</i> were found to be beneficial for maintaining intestinal homeostasis. These differentially enriched genera of healthy and diarrhea piglets were further confirmed in the validation cohort. In conclusion, this study identified the diarrhea-associated and beneficial genera in the faces of piglet, providing a theoretical basis for the diagnosis and intervention of diarrhea in weaned piglets.</p>","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"19 ","pages":"401-410"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617881/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of fecal microbiota between diarrhea and non-diarrhea piglets reveals biomarkers of gut microbiota associated with diarrhea.\",\"authors\":\"Jiang Zhu, Yue Sun, Lingyan Ma, Qu Chen, Caihong Hu, Hua Yang, Qihua Hong, Yingping Xiao\",\"doi\":\"10.1016/j.aninu.2024.05.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diarrhea poses a significant threat to the health and well-being of weaned piglets, leading to substantial morbidity and mortality and economic loss in the pig industry. However, the structural characteristics of the gut microbiota and the key genera associated with early diarrhea in piglets within large-scale production systems are poorly understood. This study aimed to investigate the differences in the microbial community structure and the specific genera alteration between the healthy piglets and diarrhea piglets, and to identify the biomarkers of gut microbiota associated with diarrhea in piglets. A total of 250 fecal samples, including 130 healthy piglets (Duroc × Landrace × Large Yorkshire) in the Control group and 120 from diarrhea piglets in Diarrhea group, were collected from three large-scale farms as discovery cohorts and were used for 16S rRNA gene sequencing. Additionally, 150 fecal samples from another large-scale pig farm were collected for the validation trail. The Chao1 and ACE indices were obviously lower (<i>P</i> < 0.01) in the diarrhea piglets compared to the healthy ones. Principal coordinate analysis showed significant differences in the distance matrix of gut microbiota between the healthy and diarrhea piglets (Bray-Curtis: <i>P</i> = 0.001, Jaccard: <i>P</i> = 0.001). Eighty-five genera were differentially enriched (<i>P</i> < 0.001) between healthy and diarrhea piglets. Notably, <i>Treponema</i>, <i>Sphaerochaeta</i>, <i>Escherichia-Shigella</i>, <i>Slackia</i>, and <i>Staphylococcus</i> were identified as potential biomarkers of diarrhea susceptibility; <i>Clostridium sensu stricto 1</i>, <i>Prevotella_9</i>, <i>Olsenella</i>, <i>Dorea</i>, and <i>Lachnospiraceae NK4A136 group</i> were found to be beneficial for maintaining intestinal homeostasis. These differentially enriched genera of healthy and diarrhea piglets were further confirmed in the validation cohort. In conclusion, this study identified the diarrhea-associated and beneficial genera in the faces of piglet, providing a theoretical basis for the diagnosis and intervention of diarrhea in weaned piglets.</p>\",\"PeriodicalId\":8184,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"19 \",\"pages\":\"401-410\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617881/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aninu.2024.05.013\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2024.05.013","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
腹泻对断奶仔猪的健康和福祉构成重大威胁,导致大量发病率和死亡率以及养猪业的经济损失。然而,在大规模生产系统中,肠道微生物群的结构特征和与仔猪早期腹泻相关的关键属尚不清楚。本研究旨在探讨健康仔猪和腹泻仔猪肠道微生物群落结构的差异和特定属的变化,并确定与仔猪腹泻相关的肠道微生物群生物标志物。选取3个大型猪场的健康仔猪(杜×长×大)130头作为对照组,腹泻仔猪120头作为腹泻组,共收集粪便样本250份,进行16S rRNA基因测序。此外,从另一个大型养猪场收集了150份粪便样本用于验证试验。Chao1和ACE指数明显降低(P P = 0.001, Jaccard: P = 0.001)。85个属在健康仔猪和腹泻仔猪之间存在差异富集(P < 0.001)。值得注意的是,密螺旋体、藻毛体、埃希氏志贺氏菌、斯莱克氏菌和葡萄球菌被确定为腹泻易感性的潜在生物标志物;严格感梭菌1、普雷沃氏菌9、Olsenella、Dorea和毛螺科NK4A136组有利于维持肠道内稳态。在验证队列中进一步证实了这些健康仔猪和腹泻仔猪的差异富集属。综上所述,本研究确定了仔猪面部腹泻相关菌属和有益菌属,为断奶仔猪腹泻的诊断和干预提供了理论依据。
Comparative analysis of fecal microbiota between diarrhea and non-diarrhea piglets reveals biomarkers of gut microbiota associated with diarrhea.
Diarrhea poses a significant threat to the health and well-being of weaned piglets, leading to substantial morbidity and mortality and economic loss in the pig industry. However, the structural characteristics of the gut microbiota and the key genera associated with early diarrhea in piglets within large-scale production systems are poorly understood. This study aimed to investigate the differences in the microbial community structure and the specific genera alteration between the healthy piglets and diarrhea piglets, and to identify the biomarkers of gut microbiota associated with diarrhea in piglets. A total of 250 fecal samples, including 130 healthy piglets (Duroc × Landrace × Large Yorkshire) in the Control group and 120 from diarrhea piglets in Diarrhea group, were collected from three large-scale farms as discovery cohorts and were used for 16S rRNA gene sequencing. Additionally, 150 fecal samples from another large-scale pig farm were collected for the validation trail. The Chao1 and ACE indices were obviously lower (P < 0.01) in the diarrhea piglets compared to the healthy ones. Principal coordinate analysis showed significant differences in the distance matrix of gut microbiota between the healthy and diarrhea piglets (Bray-Curtis: P = 0.001, Jaccard: P = 0.001). Eighty-five genera were differentially enriched (P < 0.001) between healthy and diarrhea piglets. Notably, Treponema, Sphaerochaeta, Escherichia-Shigella, Slackia, and Staphylococcus were identified as potential biomarkers of diarrhea susceptibility; Clostridium sensu stricto 1, Prevotella_9, Olsenella, Dorea, and Lachnospiraceae NK4A136 group were found to be beneficial for maintaining intestinal homeostasis. These differentially enriched genera of healthy and diarrhea piglets were further confirmed in the validation cohort. In conclusion, this study identified the diarrhea-associated and beneficial genera in the faces of piglet, providing a theoretical basis for the diagnosis and intervention of diarrhea in weaned piglets.
Animal NutritionAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.