缓解黄曲霉毒素B1对草鱼肌肉发育抑制作用的新认识:4-甲基维甲素的体内外作用

IF 6.1 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animal Nutrition Pub Date : 2024-08-28 eCollection Date: 2024-12-01 DOI:10.1016/j.aninu.2024.08.001
Xiangning He, Jiajia Zhang, Weidan Jiang, Pei Wu, Yang Liu, Hongmei Ren, Xiaowan Jin, Hequn Shi, Xiaoqiu Zhou, Lin Feng
{"title":"缓解黄曲霉毒素B1对草鱼肌肉发育抑制作用的新认识:4-甲基维甲素的体内外作用","authors":"Xiangning He, Jiajia Zhang, Weidan Jiang, Pei Wu, Yang Liu, Hongmei Ren, Xiaowan Jin, Hequn Shi, Xiaoqiu Zhou, Lin Feng","doi":"10.1016/j.aninu.2024.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>Aflatoxin B1 (AFB1), an important fungal toxin, exists mainly in plant feed ingredients and animals consuming feed contaminated with AFB1 will have reduced growth and impaired health condition mainly due to oxidative stress and reduced immunity. Our previous study found that AFB1 caused oxidative damage and inhibited muscle development of zebrafish. 4-Methylesculetin (4-ME), a coumarin derivative, is now used in biochemistry and medicine widely because of its antioxidant function. Whether 4-ME could alleviate the inhibition of muscle development in grass carp induced by AFB1 has not been reported. In this experiment, 720 healthy grass carp (11.40 ± 0.01 g) were randomly divided into 4 groups with 3 replicates of 60 fish each, including control group, AFB1 group (60 μg/kg diet AFB1), 4-ME group (10 mg/kg diet 4-ME), and AFB1+4-ME group (60 μg/kg diet AFB1 + 10 mg/kg 4-ME diet), for a 60-d growth experiment. In vitro, we also set up 4 treatment groups for grass carp primary myoblast, including control group, AFB1 group (15 μmol/L AFB1), 4-ME group (0.5 μmol/L 4-ME) and AFB1+4-ME group (15 μmol/L AFB1+0.5 μmol/L 4-ME). The results showed that dietary AFB1 decreased growth performance of grass carp, damaged the ultrastructure and induced oxidative damage in grass carp muscle, and significantly decreased the mRNA and protein expression levels of myogenin (MyoG), myogenic differentiation (MyoD), myosin heavy chain (MYHC), as well as the protein expression levels of laminin β1, fibronectin and collagen Ⅰ (<i>P</i> < 0.05), significantly activated the protein expression levels of urokinase-type plasminogen activator (uPA), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and phosphorylate-38 mitogen-activated protein kinase (p38 MAPK) both in grass carp muscle and grass carp primary myoblast (<i>P</i> < 0.05). Supplementation of AFB1 with 4-ME significantly improved the growth performance inhibition and alleviated the muscle fiber development inhibition and extracellular matrix (ECM) degradation in grass carp induced by AFB1 (<i>P</i> < 0.05). The present results revealed that supplementation of AFB1 contaminated feed with 4-ME reduced the inhibition of growth and muscle development by alleviating AFB1-induced ECM degradation in grass carp, which might be related to the p38 MAPK/uPA/MMP/ECM pathway. The results implied that 4-ME could be used as a valuable mycotoxin scavenger in animal feed.</p>","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"19 ","pages":"339-354"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617288/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new insight on alleviating the inhibitory effect of aflatoxin B1 on muscle development in grass carp (<i>Ctenopharyngodon idella</i>): The effect of 4-Methylesculetin in vivo and in vitro.\",\"authors\":\"Xiangning He, Jiajia Zhang, Weidan Jiang, Pei Wu, Yang Liu, Hongmei Ren, Xiaowan Jin, Hequn Shi, Xiaoqiu Zhou, Lin Feng\",\"doi\":\"10.1016/j.aninu.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aflatoxin B1 (AFB1), an important fungal toxin, exists mainly in plant feed ingredients and animals consuming feed contaminated with AFB1 will have reduced growth and impaired health condition mainly due to oxidative stress and reduced immunity. Our previous study found that AFB1 caused oxidative damage and inhibited muscle development of zebrafish. 4-Methylesculetin (4-ME), a coumarin derivative, is now used in biochemistry and medicine widely because of its antioxidant function. Whether 4-ME could alleviate the inhibition of muscle development in grass carp induced by AFB1 has not been reported. In this experiment, 720 healthy grass carp (11.40 ± 0.01 g) were randomly divided into 4 groups with 3 replicates of 60 fish each, including control group, AFB1 group (60 μg/kg diet AFB1), 4-ME group (10 mg/kg diet 4-ME), and AFB1+4-ME group (60 μg/kg diet AFB1 + 10 mg/kg 4-ME diet), for a 60-d growth experiment. In vitro, we also set up 4 treatment groups for grass carp primary myoblast, including control group, AFB1 group (15 μmol/L AFB1), 4-ME group (0.5 μmol/L 4-ME) and AFB1+4-ME group (15 μmol/L AFB1+0.5 μmol/L 4-ME). The results showed that dietary AFB1 decreased growth performance of grass carp, damaged the ultrastructure and induced oxidative damage in grass carp muscle, and significantly decreased the mRNA and protein expression levels of myogenin (MyoG), myogenic differentiation (MyoD), myosin heavy chain (MYHC), as well as the protein expression levels of laminin β1, fibronectin and collagen Ⅰ (<i>P</i> < 0.05), significantly activated the protein expression levels of urokinase-type plasminogen activator (uPA), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and phosphorylate-38 mitogen-activated protein kinase (p38 MAPK) both in grass carp muscle and grass carp primary myoblast (<i>P</i> < 0.05). Supplementation of AFB1 with 4-ME significantly improved the growth performance inhibition and alleviated the muscle fiber development inhibition and extracellular matrix (ECM) degradation in grass carp induced by AFB1 (<i>P</i> < 0.05). The present results revealed that supplementation of AFB1 contaminated feed with 4-ME reduced the inhibition of growth and muscle development by alleviating AFB1-induced ECM degradation in grass carp, which might be related to the p38 MAPK/uPA/MMP/ECM pathway. The results implied that 4-ME could be used as a valuable mycotoxin scavenger in animal feed.</p>\",\"PeriodicalId\":8184,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"19 \",\"pages\":\"339-354\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617288/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aninu.2024.08.001\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2024.08.001","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

黄曲霉毒素B1 (AFB1)是一种重要的真菌毒素,主要存在于植物性饲料原料中,动物食用了被AFB1污染的饲料后,主要由于氧化应激和免疫力下降而导致生长迟缓和健康状况受损。我们之前的研究发现AFB1引起斑马鱼的氧化损伤,抑制肌肉发育。4-甲基维甲素(4-ME)是香豆素的一种衍生物,因其具有抗氧化功能而广泛应用于生物化学和医学领域。4-ME能否缓解AFB1对草鱼肌肉发育的抑制尚未见报道。试验选用健康草鱼720尾(11.40±0.01 g),随机分为对照组、AFB1组(60 μg/kg饲料AFB1)、4- me组(10 mg/kg饲料4- me)和AFB1+4- me组(60 μg/kg饲料AFB1+ 10 mg/kg 4- me饲料)4组,每组3个重复,每组60尾,进行60 d生长试验。体外对草鱼原代成肌细胞设置4个处理组,分别为对照组、AFB1组(15 μmol/L AFB1)、4- me组(0.5 μmol/L 4- me)和AFB1+4- me组(15 μmol/L AFB1+0.5 μmol/L 4- me)。结果表明:饲粮中添加AFB1降低了草鱼的生长性能,破坏了草鱼肌肉的超微结构,诱导了草鱼肌肉的氧化损伤,显著降低了草鱼肌原素(MyoG)、肌原分化(MyoD)、肌球蛋白重链(MYHC) mRNA和蛋白的表达水平,以及层粘连蛋白β1、纤维连接蛋白和胶原Ⅰ(P P P P)蛋白的表达水平
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new insight on alleviating the inhibitory effect of aflatoxin B1 on muscle development in grass carp (Ctenopharyngodon idella): The effect of 4-Methylesculetin in vivo and in vitro.

Aflatoxin B1 (AFB1), an important fungal toxin, exists mainly in plant feed ingredients and animals consuming feed contaminated with AFB1 will have reduced growth and impaired health condition mainly due to oxidative stress and reduced immunity. Our previous study found that AFB1 caused oxidative damage and inhibited muscle development of zebrafish. 4-Methylesculetin (4-ME), a coumarin derivative, is now used in biochemistry and medicine widely because of its antioxidant function. Whether 4-ME could alleviate the inhibition of muscle development in grass carp induced by AFB1 has not been reported. In this experiment, 720 healthy grass carp (11.40 ± 0.01 g) were randomly divided into 4 groups with 3 replicates of 60 fish each, including control group, AFB1 group (60 μg/kg diet AFB1), 4-ME group (10 mg/kg diet 4-ME), and AFB1+4-ME group (60 μg/kg diet AFB1 + 10 mg/kg 4-ME diet), for a 60-d growth experiment. In vitro, we also set up 4 treatment groups for grass carp primary myoblast, including control group, AFB1 group (15 μmol/L AFB1), 4-ME group (0.5 μmol/L 4-ME) and AFB1+4-ME group (15 μmol/L AFB1+0.5 μmol/L 4-ME). The results showed that dietary AFB1 decreased growth performance of grass carp, damaged the ultrastructure and induced oxidative damage in grass carp muscle, and significantly decreased the mRNA and protein expression levels of myogenin (MyoG), myogenic differentiation (MyoD), myosin heavy chain (MYHC), as well as the protein expression levels of laminin β1, fibronectin and collagen Ⅰ (P < 0.05), significantly activated the protein expression levels of urokinase-type plasminogen activator (uPA), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and phosphorylate-38 mitogen-activated protein kinase (p38 MAPK) both in grass carp muscle and grass carp primary myoblast (P < 0.05). Supplementation of AFB1 with 4-ME significantly improved the growth performance inhibition and alleviated the muscle fiber development inhibition and extracellular matrix (ECM) degradation in grass carp induced by AFB1 (P < 0.05). The present results revealed that supplementation of AFB1 contaminated feed with 4-ME reduced the inhibition of growth and muscle development by alleviating AFB1-induced ECM degradation in grass carp, which might be related to the p38 MAPK/uPA/MMP/ECM pathway. The results implied that 4-ME could be used as a valuable mycotoxin scavenger in animal feed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animal Nutrition
Animal Nutrition Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍: Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信