端系甲氧基- peo链密度对尿毒症毒素吸附的影响。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2025-01-20 Epub Date: 2024-12-06 DOI:10.1021/acsabm.4c01564
Ayda Ghahremanzadeh, Mehdi Ghaffari Sharaf, Marcello Tonelli, Larry D Unsworth
{"title":"端系甲氧基- peo链密度对尿毒症毒素吸附的影响。","authors":"Ayda Ghahremanzadeh, Mehdi Ghaffari Sharaf, Marcello Tonelli, Larry D Unsworth","doi":"10.1021/acsabm.4c01564","DOIUrl":null,"url":null,"abstract":"<p><p>In 2023, around 850 million people globally were affected by chronic kidney disease, which leads to the retention of uremic toxins and excess fluid in the blood. This study examines the adsorption of these toxins to poly(ethylene oxide) (PEO) films, known for their low-fouling properties. The gold surfaces were treated with 5 mM end-thiolated methoxy-terminated PEO (<i>m</i>-PEO) and analyzed using dynamic contact angle measurements, X-ray photoelectron spectroscopy, and spectroscopic ellipsometry to confirm the PEO film's presence and determine chain density. The adsorption of 25 different uremic toxins to <i>m</i>-PEO films was evaluated by using liquid chromatography-mass spectrometry (LC/MS), focusing on their binding affinity and adsorption dynamics. Results showed the effective modification of surfaces with <i>m</i>-PEO, with a notable change in contact angles and chain density (∼0.5 and 0.8 chains/nm<sup>2</sup>). Interestingly, pyruvic acid showed significant adsorption, whereas other toxins, such as hippuric acid, creatinine, and xanthosine had minimal interactions with the film. This indicates that the adsorption of these toxins is not primarily concentration driven and is rather dependent on the chemical structure of each toxin. These findings provide important insights for designing low-fouling coatings for biomedical devices.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"704-714"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of End-Tethered Methoxy-PEO Chain Density on Uremic Toxin Adsorption.\",\"authors\":\"Ayda Ghahremanzadeh, Mehdi Ghaffari Sharaf, Marcello Tonelli, Larry D Unsworth\",\"doi\":\"10.1021/acsabm.4c01564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 2023, around 850 million people globally were affected by chronic kidney disease, which leads to the retention of uremic toxins and excess fluid in the blood. This study examines the adsorption of these toxins to poly(ethylene oxide) (PEO) films, known for their low-fouling properties. The gold surfaces were treated with 5 mM end-thiolated methoxy-terminated PEO (<i>m</i>-PEO) and analyzed using dynamic contact angle measurements, X-ray photoelectron spectroscopy, and spectroscopic ellipsometry to confirm the PEO film's presence and determine chain density. The adsorption of 25 different uremic toxins to <i>m</i>-PEO films was evaluated by using liquid chromatography-mass spectrometry (LC/MS), focusing on their binding affinity and adsorption dynamics. Results showed the effective modification of surfaces with <i>m</i>-PEO, with a notable change in contact angles and chain density (∼0.5 and 0.8 chains/nm<sup>2</sup>). Interestingly, pyruvic acid showed significant adsorption, whereas other toxins, such as hippuric acid, creatinine, and xanthosine had minimal interactions with the film. This indicates that the adsorption of these toxins is not primarily concentration driven and is rather dependent on the chemical structure of each toxin. These findings provide important insights for designing low-fouling coatings for biomedical devices.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"704-714\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.4c01564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

2023年,全球约有8.5亿人患有慢性肾病,导致尿毒症毒素潴留和血液中液体过多。本研究考察了这些毒素在聚环氧乙烷(PEO)薄膜上的吸附,聚环氧乙烷以其低污染特性而闻名。用5 mM端噻化甲氧基PEO (m-PEO)处理金表面,并使用动态接触角测量、x射线光电子能谱和光谱椭偏仪进行分析,以确认PEO膜的存在并确定链密度。采用液相色谱-质谱法(LC/MS)研究了25种不同的尿毒症毒素在m-PEO膜上的吸附,重点研究了它们的结合亲和力和吸附动力学。结果表明,m-PEO对表面进行了有效修饰,接触角和链密度(~ 0.5和0.8链/nm2)发生了显著变化。有趣的是,丙酮酸表现出明显的吸附作用,而其他毒素,如马尿酸、肌酐和黄嘌呤与膜的相互作用很小。这表明,这些毒素的吸附主要不是浓度驱动的,而是取决于每种毒素的化学结构。这些发现为设计生物医学设备的低污染涂层提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of End-Tethered Methoxy-PEO Chain Density on Uremic Toxin Adsorption.

In 2023, around 850 million people globally were affected by chronic kidney disease, which leads to the retention of uremic toxins and excess fluid in the blood. This study examines the adsorption of these toxins to poly(ethylene oxide) (PEO) films, known for their low-fouling properties. The gold surfaces were treated with 5 mM end-thiolated methoxy-terminated PEO (m-PEO) and analyzed using dynamic contact angle measurements, X-ray photoelectron spectroscopy, and spectroscopic ellipsometry to confirm the PEO film's presence and determine chain density. The adsorption of 25 different uremic toxins to m-PEO films was evaluated by using liquid chromatography-mass spectrometry (LC/MS), focusing on their binding affinity and adsorption dynamics. Results showed the effective modification of surfaces with m-PEO, with a notable change in contact angles and chain density (∼0.5 and 0.8 chains/nm2). Interestingly, pyruvic acid showed significant adsorption, whereas other toxins, such as hippuric acid, creatinine, and xanthosine had minimal interactions with the film. This indicates that the adsorption of these toxins is not primarily concentration driven and is rather dependent on the chemical structure of each toxin. These findings provide important insights for designing low-fouling coatings for biomedical devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信