超低价阳离子掺杂降低超高功率锂离子电池Wadsley-Roth晶体剪切面上的锂扩散势垒

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jun Ma, Yu Xiang, Jingyue Xu, Wenfeng Zhang, Huimin Zhang, Jingyi Qiu, Xiayu Zhu, Hao Zhang, Haiping Lin, Gaoping Cao
{"title":"超低价阳离子掺杂降低超高功率锂离子电池Wadsley-Roth晶体剪切面上的锂扩散势垒","authors":"Jun Ma,&nbsp;Yu Xiang,&nbsp;Jingyue Xu,&nbsp;Wenfeng Zhang,&nbsp;Huimin Zhang,&nbsp;Jingyi Qiu,&nbsp;Xiayu Zhu,&nbsp;Hao Zhang,&nbsp;Haiping Lin,&nbsp;Gaoping Cao","doi":"10.1002/aenm.202403623","DOIUrl":null,"url":null,"abstract":"<p>Rapid-charging niobium–tungsten oxide Nb<sub>14</sub>W<sub>3</sub>O<sub>44</sub> (NbWO) anodes with a Wadsley–Roth crystallographic shear (WRCS) structure possess 3D interconnected open tunnels. However, the anisotropic Li<sup>+</sup> diffusion paths lead to a high lithium-diffusion barrier of hooping between window sites across edge-shared octahedrons, as the rate-limiting step of hooping. To improve the rate capability of NbWO, doping it with low-valent cations (with valences lower than W<sup>6+</sup>) to reduce the high lithium-diffusion barrier is proposed. Electron energy loss spectroscopy reveals that low-valent V<sup>5+</sup>, V<sup>4+</sup>, Tb<sup>4+</sup>, and Ce<sup>4+</sup> tend to distribute on the crystallographic shear plane under electrostatic repulsion forces. The reduction in steric hindrance resulting from the increased long bond length ratio of doped edge-shared octahedrons, coupled with coordination environment modification of [LiO<sub>5</sub>] on the crystallographic shear plane due to the low energy level of V<sup>5+</sup>, enhances Li<sup>+</sup> diffusion kinetics and cyclic stability. V<sup>5+</sup>- and Tb<sup>4+</sup>-doped NbWOs achieve rate capacities of 83 and 63 mAh g<sup>−1</sup>, at 200 C (1C = 0.178 Ag<sup>−1</sup>) and retain 75.42% and 86.79% of their capacities, respectively, after 3700 cycles at 20 C. Thus, the proposed doping strategy is promising for preparing WRCS-type niobium-based oxides for ultrafast lithium storage.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 12","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Lithium-Diffusion Barrier on the Wadsley–Roth Crystallographic Shear Plane via Low-Valent Cation Doping for Ultrahigh Power Lithium-Ion Batteries\",\"authors\":\"Jun Ma,&nbsp;Yu Xiang,&nbsp;Jingyue Xu,&nbsp;Wenfeng Zhang,&nbsp;Huimin Zhang,&nbsp;Jingyi Qiu,&nbsp;Xiayu Zhu,&nbsp;Hao Zhang,&nbsp;Haiping Lin,&nbsp;Gaoping Cao\",\"doi\":\"10.1002/aenm.202403623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rapid-charging niobium–tungsten oxide Nb<sub>14</sub>W<sub>3</sub>O<sub>44</sub> (NbWO) anodes with a Wadsley–Roth crystallographic shear (WRCS) structure possess 3D interconnected open tunnels. However, the anisotropic Li<sup>+</sup> diffusion paths lead to a high lithium-diffusion barrier of hooping between window sites across edge-shared octahedrons, as the rate-limiting step of hooping. To improve the rate capability of NbWO, doping it with low-valent cations (with valences lower than W<sup>6+</sup>) to reduce the high lithium-diffusion barrier is proposed. Electron energy loss spectroscopy reveals that low-valent V<sup>5+</sup>, V<sup>4+</sup>, Tb<sup>4+</sup>, and Ce<sup>4+</sup> tend to distribute on the crystallographic shear plane under electrostatic repulsion forces. The reduction in steric hindrance resulting from the increased long bond length ratio of doped edge-shared octahedrons, coupled with coordination environment modification of [LiO<sub>5</sub>] on the crystallographic shear plane due to the low energy level of V<sup>5+</sup>, enhances Li<sup>+</sup> diffusion kinetics and cyclic stability. V<sup>5+</sup>- and Tb<sup>4+</sup>-doped NbWOs achieve rate capacities of 83 and 63 mAh g<sup>−1</sup>, at 200 C (1C = 0.178 Ag<sup>−1</sup>) and retain 75.42% and 86.79% of their capacities, respectively, after 3700 cycles at 20 C. Thus, the proposed doping strategy is promising for preparing WRCS-type niobium-based oxides for ultrafast lithium storage.</p>\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202403623\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202403623","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

快速充电铌钨氧化物Nb14W3O44 (NbWO)阳极具有Wadsley-Roth晶体剪切(WRCS)结构,具有三维互连的开放隧道。然而,各向异性的Li+扩散路径导致了高的锂扩散势垒,作为环的限速步骤,环在边缘共享八面体的窗口位点之间。为了提高NbWO的倍率性能,提出了在NbWO中掺入低于W6+的低价阳离子来降低高锂扩散势垒的方法。电子能损失谱分析表明,在静电斥力作用下,低价的V5+、V4+、Tb4+和Ce4+倾向于在晶体剪切面上分布。掺边共享八面体的长键长比增加导致的位阻降低,再加上V5+的低能级对[LiO5]在晶体剪切面上的配位环境进行修饰,增强了Li+的扩散动力学和循环稳定性。在200℃(1C = 0.178 Ag - 1)下,掺V5+-和Tb4+的NbWOs的倍率容量分别达到83和63 mAh g - 1,在20℃下循环3700次后,其倍率容量分别保持在75.42%和86.79%。因此,该掺杂策略有望制备用于超快锂存储的wrcs型铌基氧化物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reducing Lithium-Diffusion Barrier on the Wadsley–Roth Crystallographic Shear Plane via Low-Valent Cation Doping for Ultrahigh Power Lithium-Ion Batteries

Reducing Lithium-Diffusion Barrier on the Wadsley–Roth Crystallographic Shear Plane via Low-Valent Cation Doping for Ultrahigh Power Lithium-Ion Batteries

Rapid-charging niobium–tungsten oxide Nb14W3O44 (NbWO) anodes with a Wadsley–Roth crystallographic shear (WRCS) structure possess 3D interconnected open tunnels. However, the anisotropic Li+ diffusion paths lead to a high lithium-diffusion barrier of hooping between window sites across edge-shared octahedrons, as the rate-limiting step of hooping. To improve the rate capability of NbWO, doping it with low-valent cations (with valences lower than W6+) to reduce the high lithium-diffusion barrier is proposed. Electron energy loss spectroscopy reveals that low-valent V5+, V4+, Tb4+, and Ce4+ tend to distribute on the crystallographic shear plane under electrostatic repulsion forces. The reduction in steric hindrance resulting from the increased long bond length ratio of doped edge-shared octahedrons, coupled with coordination environment modification of [LiO5] on the crystallographic shear plane due to the low energy level of V5+, enhances Li+ diffusion kinetics and cyclic stability. V5+- and Tb4+-doped NbWOs achieve rate capacities of 83 and 63 mAh g−1, at 200 C (1C = 0.178 Ag−1) and retain 75.42% and 86.79% of their capacities, respectively, after 3700 cycles at 20 C. Thus, the proposed doping strategy is promising for preparing WRCS-type niobium-based oxides for ultrafast lithium storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信