{"title":"乳酸/半胱氨酸双消耗益生菌-纳米药物生物混合系统增强癌症化学免疫治疗","authors":"Tian-Qiu Xie, Xiao Yan, You-Teng Qin, Cheng Zhang, Xiao-Kang Jin, Qian-Ru Li, Zhi-Yong Rao, Hao Zhou, Wei-Hai Chen, Xian-Zheng Zhang","doi":"10.1021/acs.nanolett.4c04938","DOIUrl":null,"url":null,"abstract":"Immunotherapy is revolutionizing oncology, but its therapeutic efficiency is still limited by the off-target toxicities and poor antitumor immune responses. By integrating the drug-loaded nanoparticles (DMnSH) with the unique metabolic traits of <i>Veillonella parvula</i> (Vei), a probiotic–nanomedicine conjugate Vei@DMnSH biohybrid is elaborately designed for enhanced cancer chemo-immunotherapy. Specifically, Vei@DMnSH can accumulate in hypoxic tumor sites and simultaneously consume lactate and cysteine to reverse the lactate-associated immunosuppression and impede the biosynthesis of GSH. In addition, the DMnSH nanoparticles will rapidly deplete intracellular GSH and disassemble to release DOX and Mn<sup>2+</sup>. Accompanied by the two-pronged GSH depletion, the Mn<sup>2+</sup>-mediated Fenton-like reaction can effectively generate oxidative hydroxyl radicals to induce heavy redox imbalance. Combined with the therapeutic effect of DOX, robust immunogenic cell death is provoked and subsequently activates antitumor adaptive immunity with a tumor suppression rate over 82%, synergistically enhancing the therapeutic outcomes of cancer chemo-immunotherapy.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"13 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactate/Cysteine Dual-Consuming Probiotic–Nanomedicine Biohybrid System for Enhanced Cancer Chemo-Immunotherapy\",\"authors\":\"Tian-Qiu Xie, Xiao Yan, You-Teng Qin, Cheng Zhang, Xiao-Kang Jin, Qian-Ru Li, Zhi-Yong Rao, Hao Zhou, Wei-Hai Chen, Xian-Zheng Zhang\",\"doi\":\"10.1021/acs.nanolett.4c04938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immunotherapy is revolutionizing oncology, but its therapeutic efficiency is still limited by the off-target toxicities and poor antitumor immune responses. By integrating the drug-loaded nanoparticles (DMnSH) with the unique metabolic traits of <i>Veillonella parvula</i> (Vei), a probiotic–nanomedicine conjugate Vei@DMnSH biohybrid is elaborately designed for enhanced cancer chemo-immunotherapy. Specifically, Vei@DMnSH can accumulate in hypoxic tumor sites and simultaneously consume lactate and cysteine to reverse the lactate-associated immunosuppression and impede the biosynthesis of GSH. In addition, the DMnSH nanoparticles will rapidly deplete intracellular GSH and disassemble to release DOX and Mn<sup>2+</sup>. Accompanied by the two-pronged GSH depletion, the Mn<sup>2+</sup>-mediated Fenton-like reaction can effectively generate oxidative hydroxyl radicals to induce heavy redox imbalance. Combined with the therapeutic effect of DOX, robust immunogenic cell death is provoked and subsequently activates antitumor adaptive immunity with a tumor suppression rate over 82%, synergistically enhancing the therapeutic outcomes of cancer chemo-immunotherapy.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04938\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04938","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Lactate/Cysteine Dual-Consuming Probiotic–Nanomedicine Biohybrid System for Enhanced Cancer Chemo-Immunotherapy
Immunotherapy is revolutionizing oncology, but its therapeutic efficiency is still limited by the off-target toxicities and poor antitumor immune responses. By integrating the drug-loaded nanoparticles (DMnSH) with the unique metabolic traits of Veillonella parvula (Vei), a probiotic–nanomedicine conjugate Vei@DMnSH biohybrid is elaborately designed for enhanced cancer chemo-immunotherapy. Specifically, Vei@DMnSH can accumulate in hypoxic tumor sites and simultaneously consume lactate and cysteine to reverse the lactate-associated immunosuppression and impede the biosynthesis of GSH. In addition, the DMnSH nanoparticles will rapidly deplete intracellular GSH and disassemble to release DOX and Mn2+. Accompanied by the two-pronged GSH depletion, the Mn2+-mediated Fenton-like reaction can effectively generate oxidative hydroxyl radicals to induce heavy redox imbalance. Combined with the therapeutic effect of DOX, robust immunogenic cell death is provoked and subsequently activates antitumor adaptive immunity with a tumor suppression rate over 82%, synergistically enhancing the therapeutic outcomes of cancer chemo-immunotherapy.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.