Houchao Jing, Junyan Dan, Hua Wei, Tongkun Guo, Zhijun Xu, Ying Jiang, Yaqing Liu
{"title":"双峰应变-电信号转换装置的符号可切换泊松比设计","authors":"Houchao Jing, Junyan Dan, Hua Wei, Tongkun Guo, Zhijun Xu, Ying Jiang, Yaqing Liu","doi":"10.1002/adma.202413774","DOIUrl":null,"url":null,"abstract":"<p>Stretchable electronic devices that conduct strain-related electronic performances have drawn extensive attention, functioning as mechanical sensors, actuators, and stretchable conductors. Although strain-insensitive or strain-responsive nature is well-achieved separately, it remains challenging to combine these two characteristics in one single device, which will offer versatile adaptability in various working situations. Herein, a hybrid material with sign-switchable Poisson's ratio (SSPR) is developed by combining a phase-change gel based reentrantreentrant honeycomb pattern and a polydimethylsiloxane film. The phase-change gel featuring thermally-regulated Young's modulus enables the hybrid material to switch between negative and positive Poisson's ratios. After integrating with a pre-stretched silver nanowires film, the obtained stretchable device performs bimodal strain-to-electrical signal transducing (Bi-SET) functions, in which the SSPR-dominated strain-resistance response switches between strain-dependent and strain-insensitive behaviors. As a proof of concept, a mode-switchable grasping system is constructed using a Bi-SET device-based controller, enabling the adaptation of grasping behaviors to various target objects.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 5","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sign-Switchable Poisson's Ratio Design for Bimodal Strain-to-Electrical Signal Transducing Device\",\"authors\":\"Houchao Jing, Junyan Dan, Hua Wei, Tongkun Guo, Zhijun Xu, Ying Jiang, Yaqing Liu\",\"doi\":\"10.1002/adma.202413774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stretchable electronic devices that conduct strain-related electronic performances have drawn extensive attention, functioning as mechanical sensors, actuators, and stretchable conductors. Although strain-insensitive or strain-responsive nature is well-achieved separately, it remains challenging to combine these two characteristics in one single device, which will offer versatile adaptability in various working situations. Herein, a hybrid material with sign-switchable Poisson's ratio (SSPR) is developed by combining a phase-change gel based reentrantreentrant honeycomb pattern and a polydimethylsiloxane film. The phase-change gel featuring thermally-regulated Young's modulus enables the hybrid material to switch between negative and positive Poisson's ratios. After integrating with a pre-stretched silver nanowires film, the obtained stretchable device performs bimodal strain-to-electrical signal transducing (Bi-SET) functions, in which the SSPR-dominated strain-resistance response switches between strain-dependent and strain-insensitive behaviors. As a proof of concept, a mode-switchable grasping system is constructed using a Bi-SET device-based controller, enabling the adaptation of grasping behaviors to various target objects.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 5\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202413774\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202413774","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sign-Switchable Poisson's Ratio Design for Bimodal Strain-to-Electrical Signal Transducing Device
Stretchable electronic devices that conduct strain-related electronic performances have drawn extensive attention, functioning as mechanical sensors, actuators, and stretchable conductors. Although strain-insensitive or strain-responsive nature is well-achieved separately, it remains challenging to combine these two characteristics in one single device, which will offer versatile adaptability in various working situations. Herein, a hybrid material with sign-switchable Poisson's ratio (SSPR) is developed by combining a phase-change gel based reentrantreentrant honeycomb pattern and a polydimethylsiloxane film. The phase-change gel featuring thermally-regulated Young's modulus enables the hybrid material to switch between negative and positive Poisson's ratios. After integrating with a pre-stretched silver nanowires film, the obtained stretchable device performs bimodal strain-to-electrical signal transducing (Bi-SET) functions, in which the SSPR-dominated strain-resistance response switches between strain-dependent and strain-insensitive behaviors. As a proof of concept, a mode-switchable grasping system is constructed using a Bi-SET device-based controller, enabling the adaptation of grasping behaviors to various target objects.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.