Jee Seok Yoon;Kwanseok Oh;Yooseung Shin;Maciej A. Mazurowski;Heung-Il Suk
{"title":"医学图像分析领域概化研究进展","authors":"Jee Seok Yoon;Kwanseok Oh;Yooseung Shin;Maciej A. Mazurowski;Heung-Il Suk","doi":"10.1109/JPROC.2024.3507831","DOIUrl":null,"url":null,"abstract":"Medical image analysis (MedIA) has become an essential tool in medicine and healthcare, aiding in disease diagnosis, prognosis, and treatment planning, and recent successes in deep learning (DL) have made significant contributions to its advances. However, deploying DL models for MedIA in real-world situations remains challenging due to their failure to generalize across the distributional gap between training and testing samples—a problem known as domain shift. Researchers have dedicated their efforts to developing various DL methods to adapt and perform robustly on unknown and out-of-distribution (OOD) data distributions. This article comprehensively reviews domain generalization (DG) studies specifically tailored for MedIA. We provide a holistic view of how DG techniques interact within the broader MedIA system, going beyond methodologies to consider the operational implications on the entire MedIA workflow. Specifically, we categorize DG methods into data-level, feature-level, model-level, and analysis-level methods. We show how those methods can be used in various stages of the MedIA workflow with DL equipped from data acquisition to model prediction and analysis. Furthermore, we critically analyze the strengths and weaknesses of various methods, unveiling future research opportunities.","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 10","pages":"1583-1609"},"PeriodicalIF":23.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain Generalization for Medical Image Analysis: A Review\",\"authors\":\"Jee Seok Yoon;Kwanseok Oh;Yooseung Shin;Maciej A. Mazurowski;Heung-Il Suk\",\"doi\":\"10.1109/JPROC.2024.3507831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical image analysis (MedIA) has become an essential tool in medicine and healthcare, aiding in disease diagnosis, prognosis, and treatment planning, and recent successes in deep learning (DL) have made significant contributions to its advances. However, deploying DL models for MedIA in real-world situations remains challenging due to their failure to generalize across the distributional gap between training and testing samples—a problem known as domain shift. Researchers have dedicated their efforts to developing various DL methods to adapt and perform robustly on unknown and out-of-distribution (OOD) data distributions. This article comprehensively reviews domain generalization (DG) studies specifically tailored for MedIA. We provide a holistic view of how DG techniques interact within the broader MedIA system, going beyond methodologies to consider the operational implications on the entire MedIA workflow. Specifically, we categorize DG methods into data-level, feature-level, model-level, and analysis-level methods. We show how those methods can be used in various stages of the MedIA workflow with DL equipped from data acquisition to model prediction and analysis. Furthermore, we critically analyze the strengths and weaknesses of various methods, unveiling future research opportunities.\",\"PeriodicalId\":20556,\"journal\":{\"name\":\"Proceedings of the IEEE\",\"volume\":\"112 10\",\"pages\":\"1583-1609\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10780969/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10780969/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Domain Generalization for Medical Image Analysis: A Review
Medical image analysis (MedIA) has become an essential tool in medicine and healthcare, aiding in disease diagnosis, prognosis, and treatment planning, and recent successes in deep learning (DL) have made significant contributions to its advances. However, deploying DL models for MedIA in real-world situations remains challenging due to their failure to generalize across the distributional gap between training and testing samples—a problem known as domain shift. Researchers have dedicated their efforts to developing various DL methods to adapt and perform robustly on unknown and out-of-distribution (OOD) data distributions. This article comprehensively reviews domain generalization (DG) studies specifically tailored for MedIA. We provide a holistic view of how DG techniques interact within the broader MedIA system, going beyond methodologies to consider the operational implications on the entire MedIA workflow. Specifically, we categorize DG methods into data-level, feature-level, model-level, and analysis-level methods. We show how those methods can be used in various stages of the MedIA workflow with DL equipped from data acquisition to model prediction and analysis. Furthermore, we critically analyze the strengths and weaknesses of various methods, unveiling future research opportunities.
期刊介绍:
Proceedings of the IEEE is the leading journal to provide in-depth review, survey, and tutorial coverage of the technical developments in electronics, electrical and computer engineering, and computer science. Consistently ranked as one of the top journals by Impact Factor, Article Influence Score and more, the journal serves as a trusted resource for engineers around the world.