{"title":"三维景观特征对热浪期间城市地面风速的影响:相对贡献与边际效应","authors":"Junda Huang, Yuncai Wang, Mangmang Wang","doi":"10.1016/j.uclim.2024.102227","DOIUrl":null,"url":null,"abstract":"Accelerating the flow of surface air through urban areas at a faster rate is one of the important nature-based solutions for reducing the threat of urban overheating. Previous studies have focused on analyzing the correlation between two-dimensional landscape patterns and sky conditions. However, the relative contribution of three-dimensional (3D) landscape features to urban wind and the marginal effect during a heatwave remain unclear. In this study, the Weather Research and Forecasting (WRF) model was used to simulate the development of the wind field during heat events with weak synoptic wind. The regions were clustered based on land cover characteristics. The impact of 3D landscape features on the wind velocities in each cluster was further explored. Results revealed that ventilation corridors predominantly occurred in the morning, dissipating by midday. Diurnal wind velocities were primarily influenced by Forest Canopy Density (FCD), Building Congestion (BC), and Landscape Shape. Specifically, in suburban areas, the negative effect on surface wind velocities stabilized when BC exceeded 0.12. This phenomenon also occurred when the FCDs were higher than 0.75. Based on these findings, the study proposes urban planning strategies aimed at enhancing natural ventilation in cities, assisting planners in developing sustainable cities with cool winds.","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"8 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional landscape features impact on urban surface wind velocity during a heatwave: Relative contribution and marginal effect\",\"authors\":\"Junda Huang, Yuncai Wang, Mangmang Wang\",\"doi\":\"10.1016/j.uclim.2024.102227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerating the flow of surface air through urban areas at a faster rate is one of the important nature-based solutions for reducing the threat of urban overheating. Previous studies have focused on analyzing the correlation between two-dimensional landscape patterns and sky conditions. However, the relative contribution of three-dimensional (3D) landscape features to urban wind and the marginal effect during a heatwave remain unclear. In this study, the Weather Research and Forecasting (WRF) model was used to simulate the development of the wind field during heat events with weak synoptic wind. The regions were clustered based on land cover characteristics. The impact of 3D landscape features on the wind velocities in each cluster was further explored. Results revealed that ventilation corridors predominantly occurred in the morning, dissipating by midday. Diurnal wind velocities were primarily influenced by Forest Canopy Density (FCD), Building Congestion (BC), and Landscape Shape. Specifically, in suburban areas, the negative effect on surface wind velocities stabilized when BC exceeded 0.12. This phenomenon also occurred when the FCDs were higher than 0.75. Based on these findings, the study proposes urban planning strategies aimed at enhancing natural ventilation in cities, assisting planners in developing sustainable cities with cool winds.\",\"PeriodicalId\":48626,\"journal\":{\"name\":\"Urban Climate\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Climate\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.uclim.2024.102227\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.uclim.2024.102227","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Three-dimensional landscape features impact on urban surface wind velocity during a heatwave: Relative contribution and marginal effect
Accelerating the flow of surface air through urban areas at a faster rate is one of the important nature-based solutions for reducing the threat of urban overheating. Previous studies have focused on analyzing the correlation between two-dimensional landscape patterns and sky conditions. However, the relative contribution of three-dimensional (3D) landscape features to urban wind and the marginal effect during a heatwave remain unclear. In this study, the Weather Research and Forecasting (WRF) model was used to simulate the development of the wind field during heat events with weak synoptic wind. The regions were clustered based on land cover characteristics. The impact of 3D landscape features on the wind velocities in each cluster was further explored. Results revealed that ventilation corridors predominantly occurred in the morning, dissipating by midday. Diurnal wind velocities were primarily influenced by Forest Canopy Density (FCD), Building Congestion (BC), and Landscape Shape. Specifically, in suburban areas, the negative effect on surface wind velocities stabilized when BC exceeded 0.12. This phenomenon also occurred when the FCDs were higher than 0.75. Based on these findings, the study proposes urban planning strategies aimed at enhancing natural ventilation in cities, assisting planners in developing sustainable cities with cool winds.
期刊介绍:
Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following:
Urban meteorology and climate[...]
Urban environmental pollution[...]
Adaptation to global change[...]
Urban economic and social issues[...]
Research Approaches[...]