摘要:基于学习更少特征的新型降维策略,实现抗氧化蛋白的鲁棒和高效分类。

Chaolu Meng, Yongqi Hou, Quan Zou, Lei Shi, Xi Su, Ying Ju
{"title":"摘要:基于学习更少特征的新型降维策略,实现抗氧化蛋白的鲁棒和高效分类。","authors":"Chaolu Meng, Yongqi Hou, Quan Zou, Lei Shi, Xi Su, Ying Ju","doi":"10.1186/s44342-024-00026-z","DOIUrl":null,"url":null,"abstract":"<p><p>In protein identification, researchers increasingly aim to achieve efficient classification using fewer features. While many feature selection methods effectively reduce the number of model features, they often cause information loss caused by merely selecting or discarding features, which limits classifier performance. To address this issue, we present Rore, an algorithm based on a feature-dimensionality reduction strategy. By mapping the original features to a latent space, Rore retains all relevant feature information while using fewer representations of the latent features. This approach significantly preserves the original information and overcomes the information loss problem associated with previous feature selection. Through extensive experimental validation and analysis, Rore demonstrated excellent performance on an antioxidant protein dataset, achieving an accuracy of 95.88% and MCC of 91.78%, using vectors including only 15 features. The Rore algorithm is available online at http://112.124.26.17:8021/Rore .</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"22 1","pages":"29"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616364/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rore: robust and efficient antioxidant protein classification via a novel dimensionality reduction strategy based on learning of fewer features.\",\"authors\":\"Chaolu Meng, Yongqi Hou, Quan Zou, Lei Shi, Xi Su, Ying Ju\",\"doi\":\"10.1186/s44342-024-00026-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In protein identification, researchers increasingly aim to achieve efficient classification using fewer features. While many feature selection methods effectively reduce the number of model features, they often cause information loss caused by merely selecting or discarding features, which limits classifier performance. To address this issue, we present Rore, an algorithm based on a feature-dimensionality reduction strategy. By mapping the original features to a latent space, Rore retains all relevant feature information while using fewer representations of the latent features. This approach significantly preserves the original information and overcomes the information loss problem associated with previous feature selection. Through extensive experimental validation and analysis, Rore demonstrated excellent performance on an antioxidant protein dataset, achieving an accuracy of 95.88% and MCC of 91.78%, using vectors including only 15 features. The Rore algorithm is available online at http://112.124.26.17:8021/Rore .</p>\",\"PeriodicalId\":94288,\"journal\":{\"name\":\"Genomics & informatics\",\"volume\":\"22 1\",\"pages\":\"29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616364/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics & informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s44342-024-00026-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44342-024-00026-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在蛋白质鉴定中,研究人员越来越倾向于使用更少的特征来实现有效的分类。虽然许多特征选择方法有效地减少了模型特征的数量,但它们往往会由于仅仅选择或丢弃特征而造成信息损失,从而限制了分类器的性能。为了解决这个问题,我们提出了一种基于特征降维策略的Rore算法。通过将原始特征映射到潜在空间,Rore保留了所有相关的特征信息,同时使用了更少的潜在特征表示。该方法有效地保留了原始信息,克服了以往特征选择带来的信息丢失问题。通过大量的实验验证和分析,Rore在抗氧化蛋白数据集上表现出色,使用仅包含15个特征的向量,准确率为95.88%,MCC为91.78%。Rore算法可在http://112.124.26.17:8021/Rore上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rore: robust and efficient antioxidant protein classification via a novel dimensionality reduction strategy based on learning of fewer features.

In protein identification, researchers increasingly aim to achieve efficient classification using fewer features. While many feature selection methods effectively reduce the number of model features, they often cause information loss caused by merely selecting or discarding features, which limits classifier performance. To address this issue, we present Rore, an algorithm based on a feature-dimensionality reduction strategy. By mapping the original features to a latent space, Rore retains all relevant feature information while using fewer representations of the latent features. This approach significantly preserves the original information and overcomes the information loss problem associated with previous feature selection. Through extensive experimental validation and analysis, Rore demonstrated excellent performance on an antioxidant protein dataset, achieving an accuracy of 95.88% and MCC of 91.78%, using vectors including only 15 features. The Rore algorithm is available online at http://112.124.26.17:8021/Rore .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信