J.M. Manzano , L. Orihuela , E. Pacheco , M. Pereira
{"title":"基于Lipschitz插值的数据驱动土壤湿度和温度时空估算。","authors":"J.M. Manzano , L. Orihuela , E. Pacheco , M. Pereira","doi":"10.1016/j.isatra.2024.11.018","DOIUrl":null,"url":null,"abstract":"<div><div>This study estimates agricultural soil variables using a non-parametric machine learning technique based on Lipschitz interpolation. This method is adapted for the first time to learn spatio-temporal dynamics, accounting for two-dimensional spatial and one temporal coordinate inputs separately. The estimator is validated on real agricultural data, addressing challenges like measurement noise and quantization. The experimental setup, including an edge layer with measurement devices and a cloud layer for data storage and processing, is detailed. Despite its simplicity, the method presents a compelling alternative to Gaussian processes and neural networks.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"156 ","pages":"Pages 535-550"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven spatio-temporal estimation of soil moisture and temperature based on Lipschitz interpolation\",\"authors\":\"J.M. Manzano , L. Orihuela , E. Pacheco , M. Pereira\",\"doi\":\"10.1016/j.isatra.2024.11.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study estimates agricultural soil variables using a non-parametric machine learning technique based on Lipschitz interpolation. This method is adapted for the first time to learn spatio-temporal dynamics, accounting for two-dimensional spatial and one temporal coordinate inputs separately. The estimator is validated on real agricultural data, addressing challenges like measurement noise and quantization. The experimental setup, including an edge layer with measurement devices and a cloud layer for data storage and processing, is detailed. Despite its simplicity, the method presents a compelling alternative to Gaussian processes and neural networks.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"156 \",\"pages\":\"Pages 535-550\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824005305\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824005305","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Data-driven spatio-temporal estimation of soil moisture and temperature based on Lipschitz interpolation
This study estimates agricultural soil variables using a non-parametric machine learning technique based on Lipschitz interpolation. This method is adapted for the first time to learn spatio-temporal dynamics, accounting for two-dimensional spatial and one temporal coordinate inputs separately. The estimator is validated on real agricultural data, addressing challenges like measurement noise and quantization. The experimental setup, including an edge layer with measurement devices and a cloud layer for data storage and processing, is detailed. Despite its simplicity, the method presents a compelling alternative to Gaussian processes and neural networks.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.