基于Lipschitz插值的数据驱动土壤湿度和温度时空估算。

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
J.M. Manzano , L. Orihuela , E. Pacheco , M. Pereira
{"title":"基于Lipschitz插值的数据驱动土壤湿度和温度时空估算。","authors":"J.M. Manzano ,&nbsp;L. Orihuela ,&nbsp;E. Pacheco ,&nbsp;M. Pereira","doi":"10.1016/j.isatra.2024.11.018","DOIUrl":null,"url":null,"abstract":"<div><div>This study estimates agricultural soil variables using a non-parametric machine learning technique based on Lipschitz interpolation. This method is adapted for the first time to learn spatio-temporal dynamics, accounting for two-dimensional spatial and one temporal coordinate inputs separately. The estimator is validated on real agricultural data, addressing challenges like measurement noise and quantization. The experimental setup, including an edge layer with measurement devices and a cloud layer for data storage and processing, is detailed. Despite its simplicity, the method presents a compelling alternative to Gaussian processes and neural networks.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"156 ","pages":"Pages 535-550"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven spatio-temporal estimation of soil moisture and temperature based on Lipschitz interpolation\",\"authors\":\"J.M. Manzano ,&nbsp;L. Orihuela ,&nbsp;E. Pacheco ,&nbsp;M. Pereira\",\"doi\":\"10.1016/j.isatra.2024.11.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study estimates agricultural soil variables using a non-parametric machine learning technique based on Lipschitz interpolation. This method is adapted for the first time to learn spatio-temporal dynamics, accounting for two-dimensional spatial and one temporal coordinate inputs separately. The estimator is validated on real agricultural data, addressing challenges like measurement noise and quantization. The experimental setup, including an edge layer with measurement devices and a cloud layer for data storage and processing, is detailed. Despite its simplicity, the method presents a compelling alternative to Gaussian processes and neural networks.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"156 \",\"pages\":\"Pages 535-550\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824005305\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824005305","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用基于Lipschitz插值的非参数机器学习技术估计农业土壤变量。该方法首次适用于时空动态学习,分别考虑二维空间和一维时间坐标输入。该估计器在实际农业数据上进行了验证,解决了测量噪声和量化等挑战。详细介绍了实验装置,包括带有测量设备的边缘层和用于数据存储和处理的云层。尽管它很简单,但该方法提供了高斯过程和神经网络的令人信服的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven spatio-temporal estimation of soil moisture and temperature based on Lipschitz interpolation
This study estimates agricultural soil variables using a non-parametric machine learning technique based on Lipschitz interpolation. This method is adapted for the first time to learn spatio-temporal dynamics, accounting for two-dimensional spatial and one temporal coordinate inputs separately. The estimator is validated on real agricultural data, addressing challenges like measurement noise and quantization. The experimental setup, including an edge layer with measurement devices and a cloud layer for data storage and processing, is detailed. Despite its simplicity, the method presents a compelling alternative to Gaussian processes and neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信