基于计算机断层图像的深度学习研究尿石成分。

IF 0.6 4区 医学 Q4 UROLOGY & NEPHROLOGY
Yuanchao Cao, Hang Yuan, Yang Guo, Bin Li, Xinning Wang, Xinsheng Wang, Yanjiang Li, Wei Jiao
{"title":"基于计算机断层图像的深度学习研究尿石成分。","authors":"Yuanchao Cao, Hang Yuan, Yang Guo, Bin Li, Xinning Wang, Xinsheng Wang, Yanjiang Li, Wei Jiao","doi":"10.56434/j.arch.esp.urol.20247709.144","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Urinary stones composed of uric acid can be treated with medicine. Computed tomography (CT) can diagnose urinary stone disease, but it is difficult to predict the type of uric stones. This study aims to develop a method to distinguish pure uric acid (UA) stones from non-uric acid (non-UA) stones by describing quantitative CT parameters of single-energy slices of urinary stones related to chemical stone types.</p><p><strong>Methods: </strong>Clinical data, CT images, and stone composition analysis results of patients with urinary stones clinically diagnosed at The Department of Urology, Affiliated Hospital of Qingdao University between 1 January 2018 and 31 December 2020 were collected and retrospectively analyzed. The above data were preprocessed and fed into a convolutional neural network to perform deep learning (DL) of the model, and the dataset was validated at a ratio of 4:1. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve and the confusion matrix were utilized to evaluate the predictive effect of the model.</p><p><strong>Results: </strong>A retrospective analysis of 918 non-enhanced thin-slice single-energy CT images of known chemical stone types (124 with UA stones and 794 with non-UA stones) was conducted using a DL model. Compared with the results of <i>ex vivo</i> analysis by infrared spectroscopy, the prediction model obtained an AUC of 0.83 for the dichotomous classification of UA stones and non-UA stones. The accuracy of the model was 97.01%, with an F1 score of 89.04%, sensitivity of 84.62%, and specificity of 82.28%.</p><p><strong>Conclusions: </strong>This DL model constructed based on convolutional neural network analysis of thin-slice single-energy CT images is highly accurate in predicting the composition of pure UA and non-UA stones, providing a simple and rapid diagnosis method.</p>","PeriodicalId":48852,"journal":{"name":"Archivos Espanoles De Urologia","volume":"77 9","pages":"1017-1025"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for the Study of Urinary Stone Composition from Computed Tomography Images.\",\"authors\":\"Yuanchao Cao, Hang Yuan, Yang Guo, Bin Li, Xinning Wang, Xinsheng Wang, Yanjiang Li, Wei Jiao\",\"doi\":\"10.56434/j.arch.esp.urol.20247709.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Urinary stones composed of uric acid can be treated with medicine. Computed tomography (CT) can diagnose urinary stone disease, but it is difficult to predict the type of uric stones. This study aims to develop a method to distinguish pure uric acid (UA) stones from non-uric acid (non-UA) stones by describing quantitative CT parameters of single-energy slices of urinary stones related to chemical stone types.</p><p><strong>Methods: </strong>Clinical data, CT images, and stone composition analysis results of patients with urinary stones clinically diagnosed at The Department of Urology, Affiliated Hospital of Qingdao University between 1 January 2018 and 31 December 2020 were collected and retrospectively analyzed. The above data were preprocessed and fed into a convolutional neural network to perform deep learning (DL) of the model, and the dataset was validated at a ratio of 4:1. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve and the confusion matrix were utilized to evaluate the predictive effect of the model.</p><p><strong>Results: </strong>A retrospective analysis of 918 non-enhanced thin-slice single-energy CT images of known chemical stone types (124 with UA stones and 794 with non-UA stones) was conducted using a DL model. Compared with the results of <i>ex vivo</i> analysis by infrared spectroscopy, the prediction model obtained an AUC of 0.83 for the dichotomous classification of UA stones and non-UA stones. The accuracy of the model was 97.01%, with an F1 score of 89.04%, sensitivity of 84.62%, and specificity of 82.28%.</p><p><strong>Conclusions: </strong>This DL model constructed based on convolutional neural network analysis of thin-slice single-energy CT images is highly accurate in predicting the composition of pure UA and non-UA stones, providing a simple and rapid diagnosis method.</p>\",\"PeriodicalId\":48852,\"journal\":{\"name\":\"Archivos Espanoles De Urologia\",\"volume\":\"77 9\",\"pages\":\"1017-1025\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivos Espanoles De Urologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.56434/j.arch.esp.urol.20247709.144\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivos Espanoles De Urologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.56434/j.arch.esp.urol.20247709.144","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:用药物治疗由尿酸组成的尿路结石。计算机断层扫描(CT)可以诊断尿路结石疾病,但难以预测尿路结石的类型。本研究旨在通过描述与化学结石类型相关的尿路结石单能量切片的定量CT参数,建立一种区分纯尿酸(UA)结石与非尿酸(non-UA)结石的方法。方法:收集2018年1月1日至2020年12月31日青岛大学附属医院泌尿外科临床诊断的尿路结石患者的临床资料、CT图像及结石成分分析结果进行回顾性分析。对上述数据进行预处理后,输入卷积神经网络对模型进行深度学习(DL),并以4:1的比例对数据集进行验证。采用受试者工作特征(ROC)曲线下面积(AUC)值和混淆矩阵评价模型的预测效果。结果:采用DL模型对918例已知化学结石类型(124例UA结石,794例非UA结石)的非增强薄层单能CT图像进行回顾性分析。与红外光谱离体分析结果比较,该预测模型对UA结石和非UA结石的二分法分类的AUC为0.83。模型准确率为97.01%,F1评分为89.04%,敏感性为84.62%,特异性为82.28%。结论:基于卷积神经网络对薄层单能CT图像的分析构建DL模型,预测纯UA和非UA结石的组成具有较高的准确率,提供了一种简单快速的诊断方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for the Study of Urinary Stone Composition from Computed Tomography Images.

Objectives: Urinary stones composed of uric acid can be treated with medicine. Computed tomography (CT) can diagnose urinary stone disease, but it is difficult to predict the type of uric stones. This study aims to develop a method to distinguish pure uric acid (UA) stones from non-uric acid (non-UA) stones by describing quantitative CT parameters of single-energy slices of urinary stones related to chemical stone types.

Methods: Clinical data, CT images, and stone composition analysis results of patients with urinary stones clinically diagnosed at The Department of Urology, Affiliated Hospital of Qingdao University between 1 January 2018 and 31 December 2020 were collected and retrospectively analyzed. The above data were preprocessed and fed into a convolutional neural network to perform deep learning (DL) of the model, and the dataset was validated at a ratio of 4:1. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve and the confusion matrix were utilized to evaluate the predictive effect of the model.

Results: A retrospective analysis of 918 non-enhanced thin-slice single-energy CT images of known chemical stone types (124 with UA stones and 794 with non-UA stones) was conducted using a DL model. Compared with the results of ex vivo analysis by infrared spectroscopy, the prediction model obtained an AUC of 0.83 for the dichotomous classification of UA stones and non-UA stones. The accuracy of the model was 97.01%, with an F1 score of 89.04%, sensitivity of 84.62%, and specificity of 82.28%.

Conclusions: This DL model constructed based on convolutional neural network analysis of thin-slice single-energy CT images is highly accurate in predicting the composition of pure UA and non-UA stones, providing a simple and rapid diagnosis method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivos Espanoles De Urologia
Archivos Espanoles De Urologia UROLOGY & NEPHROLOGY-
CiteScore
0.90
自引率
0.00%
发文量
111
期刊介绍: Archivos Españoles de Urología published since 1944, is an international peer review, susbscription Journal on Urology with original and review articles on different subjets in Urology: oncology, endourology, laparoscopic, andrology, lithiasis, pediatrics , urodynamics,... Case Report are also admitted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信