体外4D-Flow MRI和高速成像评估心输出量和瓣膜方位对生物假体肺动脉瓣血流动力学的影响。

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Nicole K Schiavone, Priya J Nair, Christopher J Elkins, Doff B McElhinney, Daniel B Ennis, John K Eaton, Alison L Marsden
{"title":"体外4D-Flow MRI和高速成像评估心输出量和瓣膜方位对生物假体肺动脉瓣血流动力学的影响。","authors":"Nicole K Schiavone, Priya J Nair, Christopher J Elkins, Doff B McElhinney, Daniel B Ennis, John K Eaton, Alison L Marsden","doi":"10.1007/s13239-024-00762-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Pulmonary valve replacement (PVR) using bioprosthetic valves is a common procedure performed in patients with repaired Tetralogy of Fallot and other conditions, but these valves frequently become dysfunctional within 15 years of implantation. The causes for early valve failure are not clearly understood. The purpose of this study was to explore the impact of changing cardiac output (CO) and valve orientation on local hemodynamics and valve performance.</p><p><strong>Methods: </strong>A 25 mm bioprosthetic valve was implanted in an idealized 3D-printed model of the right ventricular outflow tract (RVOT). The local hemodynamics at three COs and two valve orientations were assessed using 4D-Flow MRI and high-speed camera imaging.</p><p><strong>Results: </strong>Noticeable differences in jet asymmetry, the amount of recirculation, leaflet opening patterns, as well as the size and location of reversed flow regions were observed with varying CO. Rotation of the valve resulted in drastic differences in reversed flow regions, but not forward flow.</p><p><strong>Conclusion: </strong>Flow features observed in the valve with low CO in this study have previously been correlated with calcification, hemolysis, and leaflet fatigue, indicating their potential negative impact on local hemodynamics and leaflet performance.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"138-153"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the Impact of Cardiac Output and Valve Orientation on Bioprosthetic Pulmonary Valve Hemodynamics Using In Vitro 4D-Flow MRI and High-Speed Imaging.\",\"authors\":\"Nicole K Schiavone, Priya J Nair, Christopher J Elkins, Doff B McElhinney, Daniel B Ennis, John K Eaton, Alison L Marsden\",\"doi\":\"10.1007/s13239-024-00762-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Pulmonary valve replacement (PVR) using bioprosthetic valves is a common procedure performed in patients with repaired Tetralogy of Fallot and other conditions, but these valves frequently become dysfunctional within 15 years of implantation. The causes for early valve failure are not clearly understood. The purpose of this study was to explore the impact of changing cardiac output (CO) and valve orientation on local hemodynamics and valve performance.</p><p><strong>Methods: </strong>A 25 mm bioprosthetic valve was implanted in an idealized 3D-printed model of the right ventricular outflow tract (RVOT). The local hemodynamics at three COs and two valve orientations were assessed using 4D-Flow MRI and high-speed camera imaging.</p><p><strong>Results: </strong>Noticeable differences in jet asymmetry, the amount of recirculation, leaflet opening patterns, as well as the size and location of reversed flow regions were observed with varying CO. Rotation of the valve resulted in drastic differences in reversed flow regions, but not forward flow.</p><p><strong>Conclusion: </strong>Flow features observed in the valve with low CO in this study have previously been correlated with calcification, hemolysis, and leaflet fatigue, indicating their potential negative impact on local hemodynamics and leaflet performance.</p>\",\"PeriodicalId\":54322,\"journal\":{\"name\":\"Cardiovascular Engineering and Technology\",\"volume\":\" \",\"pages\":\"138-153\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13239-024-00762-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-024-00762-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:使用生物瓣膜进行肺瓣膜置换术(PVR)是修复法洛四联症和其他疾病患者的常见手术,但这些瓣膜经常在植入后15年内功能失调。早期阀门失效的原因尚不清楚。本研究的目的是探讨心输出量(CO)和瓣膜方位的改变对局部血流动力学和瓣膜性能的影响。方法:将25 mm生物瓣膜植入理想的右心室流出道3d打印模型。使用4D-Flow MRI和高速相机成像评估三个COs和两个瓣膜方向的局部血流动力学。结果:不同一氧化碳浓度下,射流不对称性、再循环量、小叶张开模式以及回流区的大小和位置均有显著差异。阀门旋转导致回流区的显著差异,而正向流量无显著差异。结论:本研究中观察到的低一氧化碳瓣膜的血流特征与钙化、溶血和小叶疲劳有关,表明它们对局部血流动力学和小叶性能有潜在的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the Impact of Cardiac Output and Valve Orientation on Bioprosthetic Pulmonary Valve Hemodynamics Using In Vitro 4D-Flow MRI and High-Speed Imaging.

Purpose: Pulmonary valve replacement (PVR) using bioprosthetic valves is a common procedure performed in patients with repaired Tetralogy of Fallot and other conditions, but these valves frequently become dysfunctional within 15 years of implantation. The causes for early valve failure are not clearly understood. The purpose of this study was to explore the impact of changing cardiac output (CO) and valve orientation on local hemodynamics and valve performance.

Methods: A 25 mm bioprosthetic valve was implanted in an idealized 3D-printed model of the right ventricular outflow tract (RVOT). The local hemodynamics at three COs and two valve orientations were assessed using 4D-Flow MRI and high-speed camera imaging.

Results: Noticeable differences in jet asymmetry, the amount of recirculation, leaflet opening patterns, as well as the size and location of reversed flow regions were observed with varying CO. Rotation of the valve resulted in drastic differences in reversed flow regions, but not forward flow.

Conclusion: Flow features observed in the valve with low CO in this study have previously been correlated with calcification, hemolysis, and leaflet fatigue, indicating their potential negative impact on local hemodynamics and leaflet performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信