纳米多孔二氧化硅的两步法分解。

IF 3.7 Q2 CHEMISTRY, PHYSICAL
ACS Physical Chemistry Au Pub Date : 2024-10-03 eCollection Date: 2024-11-27 DOI:10.1021/acsphyschemau.4c00060
Zuyi Zhang
{"title":"纳米多孔二氧化硅的两步法分解。","authors":"Zuyi Zhang","doi":"10.1021/acsphyschemau.4c00060","DOIUrl":null,"url":null,"abstract":"<p><p>The phase separation of the Na<sub>2</sub>O-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system was explored both theoretically and experimentally in order to attain a spinodal structure having a narrowed periodic distance (<70 nm) with the porosity being kept at ∼60%. The phase separation was dealt with by two stages: an initial thermodynamic process of spinodal decomposition and a latter growth of the spinodal structure. The initial structural development was related to the interfacial energy and the change in free energy caused by phase separation. For the latter growth, a mathematical model was proposed to explain the kinetics by incorporating the effect of the inverse-square law in the diffusion of SiO<sub>2</sub>, and a basic relation of (<i>d</i>: average periodic distance; <i>t</i>: time) was successfully derived. The phase separation was carried out accordingly by two steps: first for the phase separation forming durable silica skeletons at lower temperatures and second for the new equilibrium at the elevated temperature and the subsequent growth of the phase-separated structure. It was proven that the addition of Al<sub>2</sub>O<sub>3</sub> in the glasses decreased the interfacial energy, leading to small periodic distances and the rapid establishment of the durable silica skeletons. In the two-step process, the fraction of borate-rich phase increased, and the structure grew depending on a modified period of time.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 6","pages":"696-706"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613344/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spinodal Decomposition by a Two-Step Procedure for Nano Porous Silica.\",\"authors\":\"Zuyi Zhang\",\"doi\":\"10.1021/acsphyschemau.4c00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The phase separation of the Na<sub>2</sub>O-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system was explored both theoretically and experimentally in order to attain a spinodal structure having a narrowed periodic distance (<70 nm) with the porosity being kept at ∼60%. The phase separation was dealt with by two stages: an initial thermodynamic process of spinodal decomposition and a latter growth of the spinodal structure. The initial structural development was related to the interfacial energy and the change in free energy caused by phase separation. For the latter growth, a mathematical model was proposed to explain the kinetics by incorporating the effect of the inverse-square law in the diffusion of SiO<sub>2</sub>, and a basic relation of (<i>d</i>: average periodic distance; <i>t</i>: time) was successfully derived. The phase separation was carried out accordingly by two steps: first for the phase separation forming durable silica skeletons at lower temperatures and second for the new equilibrium at the elevated temperature and the subsequent growth of the phase-separated structure. It was proven that the addition of Al<sub>2</sub>O<sub>3</sub> in the glasses decreased the interfacial energy, leading to small periodic distances and the rapid establishment of the durable silica skeletons. In the two-step process, the fraction of borate-rich phase increased, and the structure grew depending on a modified period of time.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":\"4 6\",\"pages\":\"696-706\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613344/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphyschemau.4c00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.4c00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

从理论和实验两方面探讨了Na2O-B2O3-SiO2体系的相分离,以获得周期距离(2)窄的旋多结构,平均周期距离(d);T: time)成功推导。相分离分两步进行:第一步是在较低温度下形成持久的硅骨架的相分离,第二步是在较高温度下形成新的平衡和随后的相分离结构的生长。结果表明,Al2O3的加入降低了玻璃的界面能,缩短了周期距离,快速建立了耐久的硅骨架。在两步法中,富硼酸相的比例增加,结构随时间的变化而变大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spinodal Decomposition by a Two-Step Procedure for Nano Porous Silica.

The phase separation of the Na2O-B2O3-SiO2 system was explored both theoretically and experimentally in order to attain a spinodal structure having a narrowed periodic distance (<70 nm) with the porosity being kept at ∼60%. The phase separation was dealt with by two stages: an initial thermodynamic process of spinodal decomposition and a latter growth of the spinodal structure. The initial structural development was related to the interfacial energy and the change in free energy caused by phase separation. For the latter growth, a mathematical model was proposed to explain the kinetics by incorporating the effect of the inverse-square law in the diffusion of SiO2, and a basic relation of (d: average periodic distance; t: time) was successfully derived. The phase separation was carried out accordingly by two steps: first for the phase separation forming durable silica skeletons at lower temperatures and second for the new equilibrium at the elevated temperature and the subsequent growth of the phase-separated structure. It was proven that the addition of Al2O3 in the glasses decreased the interfacial energy, leading to small periodic distances and the rapid establishment of the durable silica skeletons. In the two-step process, the fraction of borate-rich phase increased, and the structure grew depending on a modified period of time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信