具有动态键重构的粒状超材料。

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhiqiang Meng, Hujie Yan, Yifan Wang
{"title":"具有动态键重构的粒状超材料。","authors":"Zhiqiang Meng,&nbsp;Hujie Yan,&nbsp;Yifan Wang","doi":"10.1126/sciadv.adq7933","DOIUrl":null,"url":null,"abstract":"<div >Biological materials dynamically reconfigure their underlying structures in response to stimuli, achieving adaptability and multifunctionality. Conversely, mechanical metamaterials have fixed interunit connections that restrict adaptability and reconfiguration. This study introduces granular metamaterials composed of discrete bimaterial structured particles that transition between assembled and unassembled states through mechanical compression and thermal stimuli. These materials enable dynamic bond reconfiguration, allowing reversible bond breaking and formation, similar to natural systems. Leveraging their discrete nature, these materials can adaptively reconfigure their shape and respond dynamically to varying conditions. Our investigations reveal that these granular metamaterials can substantially alter their mechanical properties, like compression, shearing, and bending, offering tunable mechanical characteristics across different states. Furthermore, they exhibit collective behaviors like directional movement, object capture, transportation, and gap crossing, showcasing their potential for reprogrammable functionalities. This work highlights the dynamic reconfigurability and robust adaptability of granular metamaterials, expanding their potential in responsive architecture and autonomous robotics.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 49","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616718/pdf/","citationCount":"0","resultStr":"{\"title\":\"Granular metamaterials with dynamic bond reconfiguration\",\"authors\":\"Zhiqiang Meng,&nbsp;Hujie Yan,&nbsp;Yifan Wang\",\"doi\":\"10.1126/sciadv.adq7933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Biological materials dynamically reconfigure their underlying structures in response to stimuli, achieving adaptability and multifunctionality. Conversely, mechanical metamaterials have fixed interunit connections that restrict adaptability and reconfiguration. This study introduces granular metamaterials composed of discrete bimaterial structured particles that transition between assembled and unassembled states through mechanical compression and thermal stimuli. These materials enable dynamic bond reconfiguration, allowing reversible bond breaking and formation, similar to natural systems. Leveraging their discrete nature, these materials can adaptively reconfigure their shape and respond dynamically to varying conditions. Our investigations reveal that these granular metamaterials can substantially alter their mechanical properties, like compression, shearing, and bending, offering tunable mechanical characteristics across different states. Furthermore, they exhibit collective behaviors like directional movement, object capture, transportation, and gap crossing, showcasing their potential for reprogrammable functionalities. This work highlights the dynamic reconfigurability and robust adaptability of granular metamaterials, expanding their potential in responsive architecture and autonomous robotics.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"10 49\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616718/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adq7933\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq7933","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生物材料根据刺激动态地重新配置其底层结构,实现适应性和多功能性。相反,机械超材料具有固定的单元间连接,限制了适应性和重新配置。本研究介绍了由离散双材料结构粒子组成的粒状超材料,这些粒子通过机械压缩和热刺激在组装和非组装状态之间转换。这些材料使动态键重新配置,允许可逆键断裂和形成,类似于自然系统。利用它们的离散性,这些材料可以自适应地重新配置它们的形状,并动态地响应不同的条件。我们的研究表明,这些颗粒状超材料可以大大改变其机械性能,如压缩、剪切和弯曲,在不同状态下提供可调的机械特性。此外,它们还展示了定向移动、物体捕获、运输和跨越间隙等集体行为,展示了它们具有可重新编程功能的潜力。这项工作强调了颗粒状超材料的动态可重构性和鲁棒适应性,扩大了它们在响应式架构和自主机器人中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Granular metamaterials with dynamic bond reconfiguration

Granular metamaterials with dynamic bond reconfiguration
Biological materials dynamically reconfigure their underlying structures in response to stimuli, achieving adaptability and multifunctionality. Conversely, mechanical metamaterials have fixed interunit connections that restrict adaptability and reconfiguration. This study introduces granular metamaterials composed of discrete bimaterial structured particles that transition between assembled and unassembled states through mechanical compression and thermal stimuli. These materials enable dynamic bond reconfiguration, allowing reversible bond breaking and formation, similar to natural systems. Leveraging their discrete nature, these materials can adaptively reconfigure their shape and respond dynamically to varying conditions. Our investigations reveal that these granular metamaterials can substantially alter their mechanical properties, like compression, shearing, and bending, offering tunable mechanical characteristics across different states. Furthermore, they exhibit collective behaviors like directional movement, object capture, transportation, and gap crossing, showcasing their potential for reprogrammable functionalities. This work highlights the dynamic reconfigurability and robust adaptability of granular metamaterials, expanding their potential in responsive architecture and autonomous robotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信