Megan M. Trusler , Sarah Cook , Barry H. Lomax , Christopher H. Vane
{"title":"英国泰晤士河口盐沼和城市支流沉积物芯中的微塑料污染:时空累积趋势。","authors":"Megan M. Trusler , Sarah Cook , Barry H. Lomax , Christopher H. Vane","doi":"10.1016/j.marpolbul.2024.117360","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics in sediment cores from urban tidal tributaries, Barking and Bow Creek-London and salt marshes Swanscombe, Kent, and Rainham, Essex, Thames estuary (UK), were quantified by density separation and ATR-FTIR spectroscopy. All eight tributary cores were dominated by low-density microplastics, polypropylene, polyethylene, and polystyrene with the greatest abundance (mean 360.0 ± 12.0 particles 100 g<sup>−1</sup> dwt (0–10 cm depth) observed furthest from the confluence with the Thames due to storm tank combined-sewer-overflow input. Salt marsh core microplastics were highest at Swanscombe (mean 267.1 ± 10.2 particles 100 g<sup>−1</sup> dwt at 0–10 cm depth) in the high-marsh vegetation zone. Marsh sediment radionuclide dating (Pb<sup>210</sup>, Cs<sup>137</sup>) suggested a presence of microplastics in the sediment since at least the late 1950s, with increasing abundance towards surface sediments. Tidal tributaries and salt marshes of the Thames act as natural filters, with salt marshes accumulating microplastics over time and tributaries acting as both stores and sources depending on individual site conditions and hydrodynamic variability.</div></div>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"211 ","pages":"Article 117360"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastic pollution in salt marsh and urban tributary sediment cores of the River Thames estuary, UK: Spatial and temporal accumulation trends\",\"authors\":\"Megan M. Trusler , Sarah Cook , Barry H. Lomax , Christopher H. Vane\",\"doi\":\"10.1016/j.marpolbul.2024.117360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microplastics in sediment cores from urban tidal tributaries, Barking and Bow Creek-London and salt marshes Swanscombe, Kent, and Rainham, Essex, Thames estuary (UK), were quantified by density separation and ATR-FTIR spectroscopy. All eight tributary cores were dominated by low-density microplastics, polypropylene, polyethylene, and polystyrene with the greatest abundance (mean 360.0 ± 12.0 particles 100 g<sup>−1</sup> dwt (0–10 cm depth) observed furthest from the confluence with the Thames due to storm tank combined-sewer-overflow input. Salt marsh core microplastics were highest at Swanscombe (mean 267.1 ± 10.2 particles 100 g<sup>−1</sup> dwt at 0–10 cm depth) in the high-marsh vegetation zone. Marsh sediment radionuclide dating (Pb<sup>210</sup>, Cs<sup>137</sup>) suggested a presence of microplastics in the sediment since at least the late 1950s, with increasing abundance towards surface sediments. Tidal tributaries and salt marshes of the Thames act as natural filters, with salt marshes accumulating microplastics over time and tributaries acting as both stores and sources depending on individual site conditions and hydrodynamic variability.</div></div>\",\"PeriodicalId\":18215,\"journal\":{\"name\":\"Marine pollution bulletin\",\"volume\":\"211 \",\"pages\":\"Article 117360\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine pollution bulletin\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025326X24013377\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine pollution bulletin","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025326X24013377","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Microplastic pollution in salt marsh and urban tributary sediment cores of the River Thames estuary, UK: Spatial and temporal accumulation trends
Microplastics in sediment cores from urban tidal tributaries, Barking and Bow Creek-London and salt marshes Swanscombe, Kent, and Rainham, Essex, Thames estuary (UK), were quantified by density separation and ATR-FTIR spectroscopy. All eight tributary cores were dominated by low-density microplastics, polypropylene, polyethylene, and polystyrene with the greatest abundance (mean 360.0 ± 12.0 particles 100 g−1 dwt (0–10 cm depth) observed furthest from the confluence with the Thames due to storm tank combined-sewer-overflow input. Salt marsh core microplastics were highest at Swanscombe (mean 267.1 ± 10.2 particles 100 g−1 dwt at 0–10 cm depth) in the high-marsh vegetation zone. Marsh sediment radionuclide dating (Pb210, Cs137) suggested a presence of microplastics in the sediment since at least the late 1950s, with increasing abundance towards surface sediments. Tidal tributaries and salt marshes of the Thames act as natural filters, with salt marshes accumulating microplastics over time and tributaries acting as both stores and sources depending on individual site conditions and hydrodynamic variability.
期刊介绍:
Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed as news, comment, reviews and research reports, not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general.